Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in forecasting US hurricane activity by UCL scientists

21.04.2005


The strength of hurricane activity striking the United States during the main hurricane season can now be predicted with significant accuracy thanks to a new computer model developed by scientists at University College London (UCL).



The model, unveiled in a paper in the 21 April issue of the journal Nature, will enable government, public, emergency planning bodies and insurers with US interests to receive warning in early August of the likelihood of either high or low hurricane damage during the subsequent main hurricane season from August to October. This scientific breakthrough offers the potential to significantly reduce the financial risk and uncertainty associated with each hurricane season.

The model, developed by Dr Mark Saunders and Dr Adam Lea of the UCL-based Benfield Hazard Research Centre and Tropical Storm Risk forecasting venture, uses anomalies in wind patterns from six regions over North America and the east Pacific and North Atlantic oceans during July to predict the wind energy of US striking hurricanes for the main hurricane season. The July wind anomalies are from heights between 750 and 7,500 metres above sea level and exhibit a consistent and significant link to the energy of US landfalling hurricanes during the subsequent hurricane season. The wind anomalies in these regions are indicative of atmospheric circulation patterns that either favour or hinder evolving hurricanes from reaching US shores.


The large year-on-year variability in the number of hurricanes making US landfall means that skilful seasonal forecasts of activity would benefit both individuals and a range of decision-makers. Hurricanes afflict Florida, the eastern seaboard and the Gulf Coast. They rank as the US’s most expensive natural disaster and are responsible for eight of the 10 most costly catastrophes to have affected the country. The annual average damage bill from hurricane strikes on the continental US between 1950 and 2004 is estimated at $5.6 billion (at 2004 prices).

The model correctly anticipated whether US hurricane losses were above-median or below-median in 74% of the years between 1950 and 2003. It also performed well in ‘real-time’ operation in 2004, predicting US landfalling hurricane wind energy in the upper quartile for this active and damaging hurricane season. Insurers and others would have reduced their losses in 2004 by acting upon the forecast.

“For over two decades scientists have been attempting - with limited success - to deliver seasonal predictions of hurricane activity reaching the coast of the United States,” said Dr Saunders. “This study is the first to offer forecast precision which is high enough to be practically useful. Our use of height-averaged winds as a predictor is innovative for seasonal weather forecasting and may benefit the seasonal prediction of tropical storm landfalls elsewhere in the world. All those with an interest may access our forecast for the 2005 US hurricane season from www.tropicalstormrisk.com on the 4th August.”

Dominique Fourniol | alfa
Further information:
http://www.ucl.ac.uk
http://www.tropicalstormrisk.com

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>