Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in forecasting US hurricane activity by UCL scientists

21.04.2005


The strength of hurricane activity striking the United States during the main hurricane season can now be predicted with significant accuracy thanks to a new computer model developed by scientists at University College London (UCL).



The model, unveiled in a paper in the 21 April issue of the journal Nature, will enable government, public, emergency planning bodies and insurers with US interests to receive warning in early August of the likelihood of either high or low hurricane damage during the subsequent main hurricane season from August to October. This scientific breakthrough offers the potential to significantly reduce the financial risk and uncertainty associated with each hurricane season.

The model, developed by Dr Mark Saunders and Dr Adam Lea of the UCL-based Benfield Hazard Research Centre and Tropical Storm Risk forecasting venture, uses anomalies in wind patterns from six regions over North America and the east Pacific and North Atlantic oceans during July to predict the wind energy of US striking hurricanes for the main hurricane season. The July wind anomalies are from heights between 750 and 7,500 metres above sea level and exhibit a consistent and significant link to the energy of US landfalling hurricanes during the subsequent hurricane season. The wind anomalies in these regions are indicative of atmospheric circulation patterns that either favour or hinder evolving hurricanes from reaching US shores.


The large year-on-year variability in the number of hurricanes making US landfall means that skilful seasonal forecasts of activity would benefit both individuals and a range of decision-makers. Hurricanes afflict Florida, the eastern seaboard and the Gulf Coast. They rank as the US’s most expensive natural disaster and are responsible for eight of the 10 most costly catastrophes to have affected the country. The annual average damage bill from hurricane strikes on the continental US between 1950 and 2004 is estimated at $5.6 billion (at 2004 prices).

The model correctly anticipated whether US hurricane losses were above-median or below-median in 74% of the years between 1950 and 2003. It also performed well in ‘real-time’ operation in 2004, predicting US landfalling hurricane wind energy in the upper quartile for this active and damaging hurricane season. Insurers and others would have reduced their losses in 2004 by acting upon the forecast.

“For over two decades scientists have been attempting - with limited success - to deliver seasonal predictions of hurricane activity reaching the coast of the United States,” said Dr Saunders. “This study is the first to offer forecast precision which is high enough to be practically useful. Our use of height-averaged winds as a predictor is innovative for seasonal weather forecasting and may benefit the seasonal prediction of tropical storm landfalls elsewhere in the world. All those with an interest may access our forecast for the 2005 US hurricane season from www.tropicalstormrisk.com on the 4th August.”

Dominique Fourniol | alfa
Further information:
http://www.ucl.ac.uk
http://www.tropicalstormrisk.com

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>