Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whale bones and farm soil: Sequencing biodiversity

22.04.2005


Instead of sequencing the genome of one organism, why not sequence a drop of sea water, a gram of farm soil or even a sunken whale skeleton? Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg and their US collaborators have done just that, and the result is a new appreciation for the rich diversity of life that exists in the most unlikely places (Science, April 22, 2005).



Bacteria make up the greatest mass of life on earth by far and play a crucial role in the lives of all other organisms. But scientists have only touched the tip of the iceberg when it comes to identifying bacteria – 99% of species cannot be grown by standard techniques in the laboratory. The emerging field of “metagenomics” is rapidly giving researchers a view of how diverse microbial life really is. Instead of analyzing the genome of a specific organism, scientists sequence the DNA from environmental samples such as the ocean or soil. For the first time, this gives them a clear picture of the diversity of life in these habitats.

“These studies were simply not possible before,” says Peer Bork, the EMBL scientist responsible for the data analysis in the project. "And future applications for this type of technology are endless, from giving farmers insight into their soil to fighting bacterial contamination in hospitals to characterizing microbes in a patient’s mouth.”


In the current study, Bork worked with EMBL scientist Christian von Mering and US collaborators to analyze two very different samples: whale skeletons from the bottom of the ocean floor and soil from a farm in the USA. Sunken whale skeletons are a lipid-rich nutrient source that can foster the growth of a flourishing ecosystem that contains specialized bacteria, whereas soil is an example of a complex microbial environment that can contain more than 3000 distinct species (most of them bacterial) in a half-gram sample.

The scientists started by sequencing hundreds of thousands of genes from each sample – the DNA equivalent of about 50 complete bacterial genomes. This data was then complemented by two recently published data sets from studies on surface water and on acidic underground mine water, enabling for the first time a comparative study of life in four different habitats.

From the genes in each environmental sample, scientists constructed a “functional fingerprint” of each habitat. These fingerprints revealed that the way in which each bacterial community had adapted to different environmental conditions was reflected in its genetic material. Different classes of genes were found to be specifically enriched in each environment, for example enzymes that break down plant material in the soil sample or photosynthetic genes in the surface water. Apart from known genes, the scientists also found many new environment-specific genes whose function was not previously known. Often, they could predict their broad functional class from the gene’s location in the DNA fragment. In soil, for example, many novel genes were predicted to be involved in DNA repair and in the biosynthesis of antibiotics.

“Although only a limited number of pieces of the puzzle have been revealed through the many thousands of fragments of DNA from different organisms, they are sufficient to capture differences between the communities from genome sizes to lifestyle,” Bork says.

This type of approach could provide more information on environments about which little is known – permitting estimates of the nutrient supply in the soil or pollution levels in the sea. The data may also be used as the starting point for estimating the total number of species on earth, as well as the number of cellular processes that make life so complex.

Trista Dawson | alfa
Further information:
http://www.embl.de

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>