Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whale bones and farm soil: Sequencing biodiversity

22.04.2005


Instead of sequencing the genome of one organism, why not sequence a drop of sea water, a gram of farm soil or even a sunken whale skeleton? Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg and their US collaborators have done just that, and the result is a new appreciation for the rich diversity of life that exists in the most unlikely places (Science, April 22, 2005).



Bacteria make up the greatest mass of life on earth by far and play a crucial role in the lives of all other organisms. But scientists have only touched the tip of the iceberg when it comes to identifying bacteria – 99% of species cannot be grown by standard techniques in the laboratory. The emerging field of “metagenomics” is rapidly giving researchers a view of how diverse microbial life really is. Instead of analyzing the genome of a specific organism, scientists sequence the DNA from environmental samples such as the ocean or soil. For the first time, this gives them a clear picture of the diversity of life in these habitats.

“These studies were simply not possible before,” says Peer Bork, the EMBL scientist responsible for the data analysis in the project. "And future applications for this type of technology are endless, from giving farmers insight into their soil to fighting bacterial contamination in hospitals to characterizing microbes in a patient’s mouth.”


In the current study, Bork worked with EMBL scientist Christian von Mering and US collaborators to analyze two very different samples: whale skeletons from the bottom of the ocean floor and soil from a farm in the USA. Sunken whale skeletons are a lipid-rich nutrient source that can foster the growth of a flourishing ecosystem that contains specialized bacteria, whereas soil is an example of a complex microbial environment that can contain more than 3000 distinct species (most of them bacterial) in a half-gram sample.

The scientists started by sequencing hundreds of thousands of genes from each sample – the DNA equivalent of about 50 complete bacterial genomes. This data was then complemented by two recently published data sets from studies on surface water and on acidic underground mine water, enabling for the first time a comparative study of life in four different habitats.

From the genes in each environmental sample, scientists constructed a “functional fingerprint” of each habitat. These fingerprints revealed that the way in which each bacterial community had adapted to different environmental conditions was reflected in its genetic material. Different classes of genes were found to be specifically enriched in each environment, for example enzymes that break down plant material in the soil sample or photosynthetic genes in the surface water. Apart from known genes, the scientists also found many new environment-specific genes whose function was not previously known. Often, they could predict their broad functional class from the gene’s location in the DNA fragment. In soil, for example, many novel genes were predicted to be involved in DNA repair and in the biosynthesis of antibiotics.

“Although only a limited number of pieces of the puzzle have been revealed through the many thousands of fragments of DNA from different organisms, they are sufficient to capture differences between the communities from genome sizes to lifestyle,” Bork says.

This type of approach could provide more information on environments about which little is known – permitting estimates of the nutrient supply in the soil or pollution levels in the sea. The data may also be used as the starting point for estimating the total number of species on earth, as well as the number of cellular processes that make life so complex.

Trista Dawson | alfa
Further information:
http://www.embl.de

More articles from Earth Sciences:

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>