Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whale bones and farm soil: Sequencing biodiversity

22.04.2005


Instead of sequencing the genome of one organism, why not sequence a drop of sea water, a gram of farm soil or even a sunken whale skeleton? Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg and their US collaborators have done just that, and the result is a new appreciation for the rich diversity of life that exists in the most unlikely places (Science, April 22, 2005).



Bacteria make up the greatest mass of life on earth by far and play a crucial role in the lives of all other organisms. But scientists have only touched the tip of the iceberg when it comes to identifying bacteria – 99% of species cannot be grown by standard techniques in the laboratory. The emerging field of “metagenomics” is rapidly giving researchers a view of how diverse microbial life really is. Instead of analyzing the genome of a specific organism, scientists sequence the DNA from environmental samples such as the ocean or soil. For the first time, this gives them a clear picture of the diversity of life in these habitats.

“These studies were simply not possible before,” says Peer Bork, the EMBL scientist responsible for the data analysis in the project. "And future applications for this type of technology are endless, from giving farmers insight into their soil to fighting bacterial contamination in hospitals to characterizing microbes in a patient’s mouth.”


In the current study, Bork worked with EMBL scientist Christian von Mering and US collaborators to analyze two very different samples: whale skeletons from the bottom of the ocean floor and soil from a farm in the USA. Sunken whale skeletons are a lipid-rich nutrient source that can foster the growth of a flourishing ecosystem that contains specialized bacteria, whereas soil is an example of a complex microbial environment that can contain more than 3000 distinct species (most of them bacterial) in a half-gram sample.

The scientists started by sequencing hundreds of thousands of genes from each sample – the DNA equivalent of about 50 complete bacterial genomes. This data was then complemented by two recently published data sets from studies on surface water and on acidic underground mine water, enabling for the first time a comparative study of life in four different habitats.

From the genes in each environmental sample, scientists constructed a “functional fingerprint” of each habitat. These fingerprints revealed that the way in which each bacterial community had adapted to different environmental conditions was reflected in its genetic material. Different classes of genes were found to be specifically enriched in each environment, for example enzymes that break down plant material in the soil sample or photosynthetic genes in the surface water. Apart from known genes, the scientists also found many new environment-specific genes whose function was not previously known. Often, they could predict their broad functional class from the gene’s location in the DNA fragment. In soil, for example, many novel genes were predicted to be involved in DNA repair and in the biosynthesis of antibiotics.

“Although only a limited number of pieces of the puzzle have been revealed through the many thousands of fragments of DNA from different organisms, they are sufficient to capture differences between the communities from genome sizes to lifestyle,” Bork says.

This type of approach could provide more information on environments about which little is known – permitting estimates of the nutrient supply in the soil or pollution levels in the sea. The data may also be used as the starting point for estimating the total number of species on earth, as well as the number of cellular processes that make life so complex.

Trista Dawson | alfa
Further information:
http://www.embl.de

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>