Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice-covered Baltic Sea proves ideal setting for final pre-launch CryoSat validation

19.04.2005


The northernmost part of the Baltic Sea, between Finland and Sweden, recently provided an ideal location for scientists to successfully address critical issues relating to sea ice validation before CryoSat is launched in September.



Unlike last year’s CryoSat Validation Experiments (CryoVEx 2004), which focussed on land ice and took place in Greenland and the Canadian Arctic, the recent validation activities in the Baltic scrutinised issues relating to sea ice. The experiment examined the possible sources of error that could arise in the sea-ice thickness maps that will be generated using data from ESA’s ice mission CryoSat.

Errors can arise, for example, where a snow layer is present on top of the sea ice. The weight of the snow tends to push the ice floes lower into the water, so that CryoSat, which translates the height of the ice surface above the waterline into ice thickness data, would underestimate the true thickness of the ice. Validation campaigns, thus, form a critical component of the whole mission; they provide the only means to reach a comprehensive assessment of how accurate CryoSat-derived ice thickness maps are.


Contributing to this aspect of the mission, an intensive two-week validation campaign was successfully carried out during March in the frozen Bay of Bothnia, which lies in the northernmost arm of the Baltic Sea. The campaign involved scientists from a number of institutes, namely, the Finnish Institute of Marine Research (FIMR), the Alfred Wegner Institute (AWI) from Germany, the Helsinki University of Technology (HUT), the Scottish Association of Marine Research (SAMS) and the Swedish Institute of Meteorology and Hydrology (SMHI). Ground and helicopter measurements were performed from the research vessel Aranda. The CryoSat validation activities were co-funded by ESA together with the National Technology Agency of Finland (TEKES) and other national and European sources.

In this coordinated effort, valuable information on sea ice properties and CryoSat validation measurements were collected from the surface of the ice, and from the air using the AWI Dornier 228 and HUT SC7 Skyvan aircrafts. From the air, 1600 kilometres of data were collected over the Bay of Bothnia and from several altitudes along a calibration line that was established close to the island of Hailuoto. The calibration line covered ice of varying thickness, from as little as 19 centimetres to as much as 20 metres and also included ice featuring different topography, from the smooth and level to very rough ridged forms. In addition, a helicopter suspending an electromagnetic sensor known as EM-bird, took many kilometres worth of ice thickness measurements underlying the airborne flight path. This will be compared with ice thickness data derived using the radar altimeter on board the aircraft to determine overall accuracy.

The most arduous task was undoubtedly collecting the ground measurements at various points along the calibration line. Snow thickness and snow properties were measured and holes were drilled through the ice to measure the thickness.

"We were very fortunate in many respects," says Jari Haapala, research scientist from FIMR. "We managed to reach the targeted region with the Aranda research vessel, although breaking through the thickest ice proved impossible at times. Nevertheless, after three days of crashing through the ice we found an ice researcher’s paradise. During the days we were taking measurements, cold sunny weather prevailed so that the logistics of the campaign and the equipment all worked without any difficulty – and we even had the chance to relax in the sauna every evening! We received real-time satellite data, which enabled us to design the optimal measurement paths. Because sea ice drifts as it floats in the sea, one of the most challenging tasks was to collect coincidence aircraft and helicopter measurements. We managed to perform these measurements during very clear calm weather conditions and expect to get 120 kilometres of coincidence data."

In addition to contributing to CryoSat validation of sea ice, the Bay of Bothnia provided the first occasion to test the ASIRAS airborne radar altimeter using a new Low Altimeter Mode (LAM) recently implemented by Radar Systemtechnik (RST). This new mode allows the plane to fly closer to the ground improving the quality of the laser and datasets.

"We are very pleased with the Bay of Bothnia campaign on two accounts," says Malcolm Davidson, ESA CryoSat Validation Manager. "Firstly, the data collected during the campaign will help us quantify, and eventually improve the accuracy of the CryoSat sea ice measurements, and secondly, this campaign saw the first successful flights with ASIRAS at low altitude. This is a critical issue for ESA, as ASIRAS is our validation workhorse – it will be used extensively at low altitudes during major large-scale campaigns in 2006. The lessons learned from the Bay of Bothnia campaign means that we are now much better prepared and confident for next year."

Now due for launch on 15 September, CryoSat will be the first Earth Explorer to be launched as part of ESA’s Living Planet Programme. From an altitude of 720 kilometres it will be responsible for measuring small changes in the thickness of polar ice sheets and floating sea ice with the aim of determining whether or not the Earth’s ice masses are melting due to a changing climate. The satellite is currently undergoing testing at IABG (Industrieanlagen Betriebsgesellschaft mbH) in Ottobrunn, Germany.

Mark Drinkwater | EurekAlert!
Further information:
http://www.esa.int/esaCP/SEM9CKW797E_index_0.html

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>