Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liverpool Scientist Discovers New Layer of the Earth

15.04.2005


A University of Liverpool scientist has discovered a new layer near the Earth’s core, which will enable the internal temperature of the Earth’s mantle to be measured at a much deeper level than previously possible.



Dr Christine Thomas, from the Department of Earth Sciences, has found a previously undetected seismic layer near the Earth’s core-mantle boundary. Her discovery will allow geophysicists to measure variations in the Earth’s internal temperature near the boundary between the rocky mantle and fluid core, about 2,900 km below the Earth’s surface.

Dr Thomas developed a model with colleagues at University of California Los Angeles (UCLA), which uses a recently discovered phase change (when atoms are compressed into crystals under high pressure) in the lowest part of the Earth’s mantle. They propose that temperature changes in this area can result in the creation of two seismic layers near the core-mantle boundary, the second of which has been recently discovered by Dr Thomas.


The two seismic layers can provide a sensitive thermometer with which researchers can take the temperature of the Earth’s lowermost mantle. The layers also enable scientists to examine whether cold subducted lithosphere (cold areas beneath a plate which can cause earthquakes) is reaching the core-mantle boundary, and whether hot material rises from the area between the core and mantle.

In the first case, the two seismic layers should be visible in seismic waves that travel through the Earth; the latter case would not show any layers. This would be a strong case for the convection of the whole mantle that is still a highly debated issue in the Earth Sciences.

Dr Thomas said: “Our discovery marks an exciting stage in earth science research as it provides the possibility to test the debated issue of whole mantle convection, the largely unconstrained heat flow from the Earth’s core to the mantle and the fate of subducted lithosphere with seismic data.”

The research is published in the journal, Nature, today.

Joanna Robotham | alfa
Further information:
http://www.liv.ac.uk

More articles from Earth Sciences:

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

nachricht NASA flights gauge summer sea ice melt in the Arctic
25.07.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>