Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth’s Auroras Don’t Mirror

06.04.2005


Thanks to observations from the ground and satellites in space, scientists know that the North and South Poles light up at night with Auroras because a "solar wind" of electrified gas continually flows outward from the sun at high speed in all directions, including toward the Earth. Recently, however, NASA and university scientists looking at the Earth’s northern and southern auroras were surprised to find they aren’t mirror images of each other, as was once thought.



According to scientists, the main cause behind the differences in location appears to be what occurs between the solar wind and Earth’s magnetic field.

The Earth’s magnetic field, like that of the sun and some of the other planets, is generated by electrical currents flowing inside them. The sun’s magnetic field, like that of Earth, has a north and south pole linked by lines of magnetic force.


Looking at the auroras from space, they look like almost circular bands of light around the North and South Poles. At the North Pole, it’s called aurora borealis, or northern lights, and at the South Pole it’s called the aurora australis, or southern lights.

From spacecraft observations made in October, 2002, scientists noticed that these circular bands of aurora shift in opposite directions to each other depending on the orientation of the sun’s magnetic field, which travels toward the Earth with the solar wind flow. They also noted that the auroras shift in opposite directions to each other depending on how far the Earth’s northern magnetic pole is leaning toward the sun.

What was most surprising was that both the northern and southern auroral ovals were leaning toward the dawn (morning) side of the Earth for this event. The scientists suspect the leaning may be related to "imperfections" of the Earth’s magnetic field.

"This is the first analysis to use simultaneous observations of the whole aurora in both the northern and southern hemispheres to track their locations," said lead author Timothy J. Stubbs of the Laboratory for Extraterrestrial Physics at NASA’s Goddard Space Flight Center (LEP/GSFC), Greenbelt, Md.

The Earth’s magnetic field provides an obstacle in the flow of the solar wind, and it becomes compressed into what looks like an extended tear-drop shaped bubble known as the "magnetosphere." The magnetosphere protects the Earth by shielding it from the solar wind. However, under certain conditions charged particles from the solar wind are able to get through Earth’s magnetic shield and get energized. When this happens, they crash into the Earth’s upper atmosphere and create the light which we see as an "aurora."

Stubbs and his colleagues, Richard R. Vondrak, and John B. Sigwarth, both of LEP/GSFC, Nikolai Østgaard at the University of Bergen, Norway and Louis A. Frank at the University of Iowa, used data from NASA’s Polar and IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) spacecraft to study the auroras. It was by luck that the orbits of Polar and IMAGE were aligned such that the entire auroras at the north and south poles could be observed in detail at the same time.

By knowing how auroras react to the solar wind, scientists can better determine the impacts of space weather in the future. The new discovery shows that auroras may be more complicated than previously thought.

Rob Gutro | EurekAlert!
Further information:
http://image.gsfc.nasa.gov
http://pwg.gsfc.nasa.gov/istp/polar/
http://www-spof.gsfc.nasa.gov/Education/aurora.htm

More articles from Earth Sciences:

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

nachricht WSU researchers document one of planet's largest volcanic eruptions
12.10.2017 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>