Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue scientists unravel Midwest tornado formation

04.04.2005


Purdue University study of tornado formation indicates that twisters can develop in unexpected ways and at unexpected times and places, a discovery that presents a new twist to weather watchers across the country.


While people generally expect tornadoes to form from isolated storm cells in the evening in springtime, a survey of weather data led by Purdue researcher Robert "Jeff" Trapp has revealed that a significant number of tornadoes form under unexpected circumstances. Especially in the Midwest, many tornadoes form from "line-shaped" storms often associated with large weather fronts. Such tornadoes are more likely to form during winter months, late at night. These data were taken from a survey of 3,800 tornadoes that formed over the United States from 1998-2000. (Purdue University/Trapp laboratories)




Although tornadoes are often conceived of as arising from springtime storms that develop in early evenings out of isolated weather cells, a new study spearheaded by Purdue’s Robert "Jeff" Trapp indicates those conceptions often fail to hold, especially in the Midwest. Although far from the so-called "Tornado Alley," a region that falls generally in the plains of Texas, Oklahoma and Kansas, the Midwest still experiences a high number of the storms every year.

After examining data on more than 3,800 U.S. tornadoes, Trapp’s team has found that many twisters develop within the line-shaped storm fronts that often sweep across the country. The twist is that these are tornadoes that are more likely to form late at night and in colder months.


"The upshot of our analysis is that tornadoes form under a broader set of circumstances than meteorologists once thought, and this is especially true if you live far from Tornado Alley," said Trapp, an associate professor of earth and atmospheric sciences in Purdue’s College of Science. "If you’re driving in the rain on an October midnight near Lake Michigan, remember that a tornado is not outside the realm of possibility."

Trapp’s study, which he performed with colleagues at the University of Oklahoma, Colorado State University and the National Severe Storms Laboratory, appears in the February issue of the journal Weather and Forecasting. As a first step toward improving our ability to predict tornado strikes, which often come with only a few minutes’ warning, the group initially set out to find what types of storms generally produce the destructive funnels.

"In the heart of Tornado Alley, tornadoes most often develop from relatively small ’cell’ storms that look like blotches on a Doppler radar weather map," Trapp said. "Over time, these cells frequently merge into line-shaped storms that can stretch hundreds of miles. The conventional wisdom has been that line storms don’t often spawn tornadoes, but we found that a significant number did."

The group analyzed 3,828 tornadoes that were spotted in the United States from 1998 to 2000. Though 79 percent of these tornadoes came from cells, Trapp said, 18 percent came from line storms nationwide. But in the Midwest, those numbers varied widely. In Indiana, for example, about half of the tornadoes that developed came from line storms.

"This implies that we may be overlooking many tornado-breeding storms in the Midwest and elsewhere," Trapp said. "Complicating the issue is that what we know about tornado formation is based largely on the cell-type storms observed in Oklahoma and Texas."

Cell storms often form in springtime in the late afternoon, which is why most storm warnings in Tornado Alley are issued in the evening, Trapp said. But line storms often form later at night and also in the cool season, between October and March.

"These are the hours and months when people probably least expect severe weather," Trapp said. "In fact, they may not even see a tornado coming because of the lateness of the hour."

The silver lining to all these clouds is that tornadoes are less frequent overall in the Midwest - Indiana only experiences about 20 tornadoes a year, compared to about 52 in Oklahoma and 124 in Texas - and Midwest storms are often weaker than those of the Plains. But because many of these tornadoes may go undetected, Trapp said, people outside Tornado Alley should begin to shift their thinking.

"We’re not trying to be alarmist with these findings," he said. "But we hope that people will stay alert to tornado risk even outside the traditional severe storm season."

Trapp said that the current study represents a step toward better weather prediction, but there’s still much work to be done on the problem.

"This paper is meant to be the first in a series of studies of tornado development," Trapp said. "Now that we have a better picture of when and where they form, we can begin to develop tools that can serve a practical purpose. For now, we are merely trying to raise awareness among weather watchers about tornado-forming situations that, until now, have been, figuratively speaking, beneath our radar."

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>