Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in Earth’s tilt control when glacial cycles end

30.03.2005


Tilt is a 100,000-year planetary pacemaker

Scientists have long debated what causes glacial/interglacial cycles, which have occurred most recently at intervals of about 100,000 years. A new study reported in the March 24 issue of Nature finds that these glacial cycles are paced by variations in the tilt of Earth’s axis, and that glaciations end when Earth’s tilt is large.

With more than 30 explanations proposed for these glacial cycles, researchers at the Woods Hole Oceanographic Institution (WHOI) and the Massachusetts Institute of Technology (MIT) looked at the various possibilities to determine a more precise explanation. Some hypotheses suggested changes in Earth’s orbit, others that glacial cycles are caused by random climate variability. The researchers found that the most plausible cause was that variations in the tilt of the Earth’s axis control the timing of glaciations, acting as a planetary pacemaker of sorts.



Peter Huybers, a postdoctoral fellow in the WHOI Geology and Geophysics Department, and coauthor Carl Wunsch of MIT developed a simple model to look at the effects of changes in Earth’s tilt, which determines climate belts around the planet and the seasons of the year. They also focused on rapid deglaciation events known as terminations, easily identified in climate records by their magnitude and abruptness. They first estimated the timing of glacial cycles using the rate at which sediment accumulates on the ocean floor as an indicator of time. The age estimates were then used to compare the timing of the glacial cycles with the timing of changes in Earth’s orbit, known from the laws of motion and observations of the galaxy.

"Many studies have suggested a link between orbital variations and the approximately 100,000-year glacial cycles which occurred during the late Pleistocene, about 1 million to 10,000 years ago, but this is the first rigorous test of whether the glacial cycles are, in fact, paced by orbital variations," Huybers said. "We found that glaciations end near times when the Earth’s tilt, or obliquity, is large. This narrows the number of possible explanations for the glacial cycles to those which can account for the tilt pacing of glacial cycles."
Obliquity, the angle between Earth’s equatorial and orbital planes or the tilt in Earth’s axis, varies between 22.5 and 24 degrees during a cycle of 41,000 years. As the tilt increases, so does the annual average sunlight reaching high latitudes, and these are the conditions under which Huybers and Wunsch find that glaciations end. Earth’s tilt is currently 23.5 degrees and decreasing. Without the much more rapid anthropogenic or human influences on climate, Earth would probably be slowly moving toward glaciation.

"While we are confident that Earth’s tilt paces the 100,000-year glacial cycles, we were not able to determine whether another orbital effect, the precession of Earth’s equinoxes, also contributes to the pacing," Huybers said. Precession measures the slow change in the orientation of Earth’s rotation axis, similar to a spinning top, and has been the favorite explanation amongst most scientists for the timing of the glacial cycles.

One major question is how can a 40,000-year tilt cycle produce 100,000-year glacial cycles? Huybers and Wunsch suggest that during the late Pleistocene glaciation did not end every time the tilt was large, but rather that glaciers grew over two (80,000 years) or three (120,000 years) obliquity cycles before ending. The average glacial duration then gives the 100,000-year time scale.

A possible explanation for why deglaciations do not occur every 40,000 years is that ice sheets must become large enough before they are sensitive to changes in Earth’s tilt. Huybers and Wunsch developed a simple mathematical model to express this idea of changing sensitivity and showed that it gives the right timing for the glacial cycles.

Obliquity control of the recent glacial cycles provides a fresh view on the dramatic climate swings the Earth has been subjected to over the past one million years. "While the problem is far from solved, we are now one step closer to understanding the origins of the ice ages," Huybers said.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>