Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Changes in Earth’s tilt control when glacial cycles end


Tilt is a 100,000-year planetary pacemaker

Scientists have long debated what causes glacial/interglacial cycles, which have occurred most recently at intervals of about 100,000 years. A new study reported in the March 24 issue of Nature finds that these glacial cycles are paced by variations in the tilt of Earth’s axis, and that glaciations end when Earth’s tilt is large.

With more than 30 explanations proposed for these glacial cycles, researchers at the Woods Hole Oceanographic Institution (WHOI) and the Massachusetts Institute of Technology (MIT) looked at the various possibilities to determine a more precise explanation. Some hypotheses suggested changes in Earth’s orbit, others that glacial cycles are caused by random climate variability. The researchers found that the most plausible cause was that variations in the tilt of the Earth’s axis control the timing of glaciations, acting as a planetary pacemaker of sorts.

Peter Huybers, a postdoctoral fellow in the WHOI Geology and Geophysics Department, and coauthor Carl Wunsch of MIT developed a simple model to look at the effects of changes in Earth’s tilt, which determines climate belts around the planet and the seasons of the year. They also focused on rapid deglaciation events known as terminations, easily identified in climate records by their magnitude and abruptness. They first estimated the timing of glacial cycles using the rate at which sediment accumulates on the ocean floor as an indicator of time. The age estimates were then used to compare the timing of the glacial cycles with the timing of changes in Earth’s orbit, known from the laws of motion and observations of the galaxy.

"Many studies have suggested a link between orbital variations and the approximately 100,000-year glacial cycles which occurred during the late Pleistocene, about 1 million to 10,000 years ago, but this is the first rigorous test of whether the glacial cycles are, in fact, paced by orbital variations," Huybers said. "We found that glaciations end near times when the Earth’s tilt, or obliquity, is large. This narrows the number of possible explanations for the glacial cycles to those which can account for the tilt pacing of glacial cycles."
Obliquity, the angle between Earth’s equatorial and orbital planes or the tilt in Earth’s axis, varies between 22.5 and 24 degrees during a cycle of 41,000 years. As the tilt increases, so does the annual average sunlight reaching high latitudes, and these are the conditions under which Huybers and Wunsch find that glaciations end. Earth’s tilt is currently 23.5 degrees and decreasing. Without the much more rapid anthropogenic or human influences on climate, Earth would probably be slowly moving toward glaciation.

"While we are confident that Earth’s tilt paces the 100,000-year glacial cycles, we were not able to determine whether another orbital effect, the precession of Earth’s equinoxes, also contributes to the pacing," Huybers said. Precession measures the slow change in the orientation of Earth’s rotation axis, similar to a spinning top, and has been the favorite explanation amongst most scientists for the timing of the glacial cycles.

One major question is how can a 40,000-year tilt cycle produce 100,000-year glacial cycles? Huybers and Wunsch suggest that during the late Pleistocene glaciation did not end every time the tilt was large, but rather that glaciers grew over two (80,000 years) or three (120,000 years) obliquity cycles before ending. The average glacial duration then gives the 100,000-year time scale.

A possible explanation for why deglaciations do not occur every 40,000 years is that ice sheets must become large enough before they are sensitive to changes in Earth’s tilt. Huybers and Wunsch developed a simple mathematical model to express this idea of changing sensitivity and showed that it gives the right timing for the glacial cycles.

Obliquity control of the recent glacial cycles provides a fresh view on the dramatic climate swings the Earth has been subjected to over the past one million years. "While the problem is far from solved, we are now one step closer to understanding the origins of the ice ages," Huybers said.

Shelley Dawicki | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>