Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some deep-sea earthquakes send out early-warning signals, seismologists say

24.03.2005


Research published in Nature shows theoretical feasibility of quake forecasting



Earthquakes along a set of fault lines in the Pacific Ocean emit small "foreshocks" that can be used to forecast the main tremor, according to research in the March 24 issue of Nature. It is the first demonstration that some types of large imminent earthquakes may be systematically predictable on time scales of hours or less. Statistically reliable forecasting of imminent quakes has been an elusive goal for seismologists. Co-author Thomas Jordan, director of the Southern California Earthquake Center in the USC College of Letters, Arts and Sciences, stresses that quakes on land generally do not show many foreshocks and cannot be predicted with the methods outlined in the Nature paper.

The research team, led by Jeffrey McGuire of the Woods Hole Oceanographic Institution, studied past earthquakes along two so-called transform faults on the East Pacific Rise, where tectonic plates are spreading apart. Sensor data from the National Oceanic and Atmospheric Administration pinpointed the time and location of foreshocks and earthquakes. For the purposes of the study, the researchers defined a foreshock as any tremor of at least 2.5 magnitude on the Richter scale. Earthquakes were tremors of no less than 5.4 magnitude. The researchers then declared a hypothetical "alarm" for an hour within a 15-kilometer radius of the epicenter of every foreshock.


This retroactive and "naïve" early-warning system would have predicted six of the nine major earthquakes that occurred along the two faults between 1996 and 2001, researchers said. The finding suggests that short-term prediction – the ability to forecast an earthquake in the hours or minutes before it hits – may be feasible under certain circumstances. "This is the first demonstration of good short-term predictability for big earthquakes," Jordan said. "Some scientists believe that earthquakes come on suddenly with no warning signs, and the big ones are therefore unpredictable. In other parts of the oceans, they may be."

While any random guesser could have predicted six out of nine earthquakes by declaring enough alarms, the researchers’ system performed between 300 and 1,000 times better, Jordan said. And though the false-alarm rate was high, all false alarms taken together occupied only 0.15 percent of the total volume of space and time studied. The researchers believe they can improve both the accuracy and the lead-time of their forecasts. They hypothesize that both foreshocks and main tremors are caused by an earlier trigger event – possibly a slow, smooth sliding along the fault line that fails to generate seismic waves. Such an event – called an aseismic slow slip transient – may be detectable with the proper instruments, said Jordan, who points out that movement along the San Andreas fault is recorded by an extensive array of sensors.

"If you could do the same thing on the sea floor then you would probably see this thing coming," he said. Next year an oceanographic expedition led by McGuire will drop sensors along the East Pacific Rise to begin testing the researchers’ hypothesis. The possibility that slow slip transients may herald earthquakes has wider significance, researchers said. Slow slip transients have been detected in subduction zones, where one tectonic plate scrapes under another. The most powerful and dangerous earthquakes occur in subduction zones.

"The possibility that aseismic slip triggers large earthquakes on subduction megathrusts is especially intriguing given the observation that a slow slip transient occurred 15 minutes before the great 1960 Chilean megathrust earthquake," the authors wrote in Nature. "Notably, subduction zones are observed to have higher foreshock rates than continental regions." Still, Jordan said, the question of whether earthquakes on subduction zones are predictable systematically remains open and will require better observations.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>