Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some deep-sea earthquakes send out early-warning signals, seismologists say

24.03.2005


Research published in Nature shows theoretical feasibility of quake forecasting



Earthquakes along a set of fault lines in the Pacific Ocean emit small "foreshocks" that can be used to forecast the main tremor, according to research in the March 24 issue of Nature. It is the first demonstration that some types of large imminent earthquakes may be systematically predictable on time scales of hours or less. Statistically reliable forecasting of imminent quakes has been an elusive goal for seismologists. Co-author Thomas Jordan, director of the Southern California Earthquake Center in the USC College of Letters, Arts and Sciences, stresses that quakes on land generally do not show many foreshocks and cannot be predicted with the methods outlined in the Nature paper.

The research team, led by Jeffrey McGuire of the Woods Hole Oceanographic Institution, studied past earthquakes along two so-called transform faults on the East Pacific Rise, where tectonic plates are spreading apart. Sensor data from the National Oceanic and Atmospheric Administration pinpointed the time and location of foreshocks and earthquakes. For the purposes of the study, the researchers defined a foreshock as any tremor of at least 2.5 magnitude on the Richter scale. Earthquakes were tremors of no less than 5.4 magnitude. The researchers then declared a hypothetical "alarm" for an hour within a 15-kilometer radius of the epicenter of every foreshock.


This retroactive and "naïve" early-warning system would have predicted six of the nine major earthquakes that occurred along the two faults between 1996 and 2001, researchers said. The finding suggests that short-term prediction – the ability to forecast an earthquake in the hours or minutes before it hits – may be feasible under certain circumstances. "This is the first demonstration of good short-term predictability for big earthquakes," Jordan said. "Some scientists believe that earthquakes come on suddenly with no warning signs, and the big ones are therefore unpredictable. In other parts of the oceans, they may be."

While any random guesser could have predicted six out of nine earthquakes by declaring enough alarms, the researchers’ system performed between 300 and 1,000 times better, Jordan said. And though the false-alarm rate was high, all false alarms taken together occupied only 0.15 percent of the total volume of space and time studied. The researchers believe they can improve both the accuracy and the lead-time of their forecasts. They hypothesize that both foreshocks and main tremors are caused by an earlier trigger event – possibly a slow, smooth sliding along the fault line that fails to generate seismic waves. Such an event – called an aseismic slow slip transient – may be detectable with the proper instruments, said Jordan, who points out that movement along the San Andreas fault is recorded by an extensive array of sensors.

"If you could do the same thing on the sea floor then you would probably see this thing coming," he said. Next year an oceanographic expedition led by McGuire will drop sensors along the East Pacific Rise to begin testing the researchers’ hypothesis. The possibility that slow slip transients may herald earthquakes has wider significance, researchers said. Slow slip transients have been detected in subduction zones, where one tectonic plate scrapes under another. The most powerful and dangerous earthquakes occur in subduction zones.

"The possibility that aseismic slip triggers large earthquakes on subduction megathrusts is especially intriguing given the observation that a slow slip transient occurred 15 minutes before the great 1960 Chilean megathrust earthquake," the authors wrote in Nature. "Notably, subduction zones are observed to have higher foreshock rates than continental regions." Still, Jordan said, the question of whether earthquakes on subduction zones are predictable systematically remains open and will require better observations.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>