Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Study Finds Soot May be Changing the Arctic Environment


NASA continues to explore the impact of black carbon or soot on the Earth’s climate. NASA uses satellite data and computer models that recreate the climate. New findings show soot may be contributing to changes happening near the North Pole, such as accelerating melting of sea ice and snow and changing atmospheric temperatures.

Dorothy Koch of Columbia University, New York, and NASA’s Goddard Institute for Space Studies (GISS), New York, and James Hansen of NASA GISS are co-authors of the study that appeared in a recent issue of the Journal of Geophysical Research. "This research offers additional evidence black carbon, generated through the process of incomplete combustion, may have a significant warming impact on the Arctic," Koch said. "Further, it means there may be immediate consequences for Arctic ecosystems, and potentially long-term implications on climate patterns for much of the globe," she added.

The Arctic is especially susceptible to the impact of human-generated particles and other pollution. In recent years the Arctic has significantly warmed, and sea-ice cover and glacial snow have diminished. Likely causes for these trends include changing weather patterns and the effects of pollution. Black carbon has been implicated as playing a role in melting ice and snow. When soot falls on ice, it darkens the surface and accelerates melting by increasing absorbed sunlight. Airborne soot also warms the air and affects weather patterns and clouds. Koch and Hansen’s results suggest a possible mechanism behind the satellite-derived observations of Arctic climate change. They found the timing and location of Arctic warming and sea ice loss in the late 20th century are consistent with a significant contribution from man-made tiny particles of pollution, or aerosols.

Koch and Hansen used GISS’ General Circulation Model (GCM) to investigate the origins of Arctic soot by isolating various source regions and types. The GCM employs a lot of different data gathered by NASA and other U.S. satellites to study many environmental factors such as ice cover and temperature. The research found in the atmosphere over the Arctic, about one-third of the soot comes from South Asia, one-third from burning biomass or vegetation around the world, and the remainder from Russia, Europe and North America.

South Asia is estimated to have the largest industrial soot emissions in the world, and the meteorology in that region readily lofts pollution into the upper atmosphere where it is transported to the North Pole. Meanwhile, the pollution from Europe and Russia travels closer to the surface. This study demonstrates the GCMs accurately represent the long-range transport of pollutants, such as those from Southern Asia to the Arctic, that were observed from aircraft.

During the early 1980s the primary sources of Arctic particulate pollution are believed to have been from Russia and Europe. Those sources have decreased substantially in the past two decades, but the computer simulations indicate increasing emissions from South Asia have made up for some of the reduced Eurasian pollution. Koch and Hansen suggest Southern Asia also makes the greatest contribution to soot deposited on Greenland.

NASA sponsored efforts using satellite data and models to assess polar feedbacks constitute an important contribution to the U.S. Climate Change Science Program. By exploring processes in the Earth’s atmosphere, NASA scientists are seeking answers to how pollutants like soot are changing the climate of the world around us.

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>