Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers go into action after Tsunami

21.03.2005


British researchers have launched urgent research programmes in order to learn lessons from the recent Indian Ocean Tsunami disaster. Such knowledge is relevant to both UK, and overseas disaster assessment and prevention programmes.



Funded by grants from the Engineering and Physical Sciences Research Council (EPSRC), teams from the University of Cambridge, the University of Newcastle, and University College London have looked at differing aspects of the tsunami’s effects. Their objectives were to collect and assess appropriate structural, topographical, seismological and tsunami related data.

The University of Newcastle received a grant from EPSRC to undertake an immediate survey mission to the regions affected by the tsunami. Dr Sean Wilkinson from the University’s Civil Engineering Department, with Dr Tiziana Rossetto from University College London, participated as members of the Earthquake Engineering Field Investigation Team (EEFIT) - which has now returned from the disaster zone. Their aim was to research the damage to buildings and infrastructure caused by the tsunami and to make recommendations to reduce or prevent damage in the future.


A further objective was to assess the reasons for the high death toll and suggest what engineering / architectural measures could be taken to save lives. Drs Wilkinson and Rossetto spent 10 days in Sri Lanka and Thailand researching the tsunami’s impact on structures, coastal topography, and the differences in how well-designed and badly-designed buildings stood up to the events.

Dr Sean Wilkinson said of the findings: "What we found was quite unexpected. Even in the worst hit areas, many well engineered buildings suffered only modest structural damage, however they offered little protection from the tsunami. This is the opposite to what we find for normal earthquakes and has major implications for coastal communities worldwide."

A research team from the Department of Architecture at the University of Cambridge is using EPSRC funding in collating eyewitness reports from British citizens, field surveys, and satellite imagery to build a more complete understanding of the tsunami’s behaviour and potential risks.

"More than any other recent earthquake-related disaster, the immediate and long term effects are not confined to the Indian Ocean basin, but are still being felt around the world. Rapid recording of damage data helps to identify when and where such changes have occurred," said Professor Robin Spence, the Cambridge project’s Principal Investigator.

The Cambridge University work has direct implications for UK coastal regions. Dr Ilan Kelman and Keiko Saito the project’s researchers, explain: "UK coastlines are vulnerable to rare but large scale tsunamis. Major storm damage occurs relatively frequently. The understanding of safer coastal development, which our research work could produce, will apply directly to UK practices."

The Engineering and Physical Sciences Research Council (EPSRC) reacted quickly to these funding requests and ensured that the opportunity for optimised research with direct relevance to science, and people’s lives, was achieved.

Lance Cole | EurekAlert!
Further information:
http://www.epsrc.ac.uk/

More articles from Earth Sciences:

nachricht Tiny microenvironments in the ocean hold clues to global nitrogen cycle
23.04.2018 | University of Rochester

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>