Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers recognize ’lower-energy’ varieties of coastal islands

16.03.2005


A different style of coastal barrier islands that forms under lower-energy conditions than classic ocean-facing barriers, such as North Carolina’s Outer Banks, has been identified by coastal geological researchers at Duke University and the University of Ulster in Northern Ireland. The new style of islands is typically found in protected bays and lagoons.



"This is a major and important recognition," said Orrin Pilkey, a geology professor emeritus at Duke’s Nicholas School of the Environment and Earth Sciences, who directs the university’s Program for the Study of Developed Shorelines. "It’s a type of island quite different from the standard barrier islands on the open ocean."

"There are some people who would argue that these aren’t barrier islands," Pilkey said. But Pilkey, University of Ulster geology professor J. Andrew Cooper and Duke undergraduate David Lewis believe they can identify more than 20,000 uniquely "fetch-limited barrier islands" existing globally along the coastlines of every continent except Antarctica.


Lewis, a senior in Duke’s earth and ocean sciences undergraduate program who has been researching fetch-limited barrier islands for two years, will describe the group’s findings on Thursday, March 17, 2005, at the annual meeting of the Geological Society of America’s Southeastern Section, to be held at the Grand Casino Resort’s Bayview Hotel in Biloxi, Miss. The research was supported by the University of Ulster.

Lewis said these islands are called "fetch-limited" because he has found none that encounter wave-producing wind fields -- the geophysical definition of "fetch" –- any longer than 300 kilometers.

Classic barrier islands are built and sustained by fetches longer than 300 kilometers that deliver wave energy from the open ocean. Studies have shown this wave power delivers nourishing supplies of sand sufficient to renew such islands following the severest of coastal storms.

Fetch-limited barrier islands are like the ocean-facing variety in being located along coastlines, separated from the mainland, said Lewis and Pilkey. But they are different in their wind- and wave-shielded settings.

Unlike barrier islands, numbers of fetch-limited islands are located within bays such as Maryland and Virginia’s Chesapeake. Others occupy lagoons such as Mexico’s Laguna Madre. And some are protected by coral reefs such as those behind Australia’s Great Barrier Reef.

Fetch-limited barriers also tend to be smaller than ocean-fronting barriers, the Duke researchers added. The average length of short-fetch islands is only about 1 kilometer, as demonstrated by 105 examples along Delaware Bay. By contrast, North Carolina ocean front barriers have average lengths of 21 kilometers, while those in Texas average 54 kilometers.

Deprived of the presence of significant surf zones, fetch-limited barrier islands seem to depend uniquely upon periodic storm overwash or spring high tide events to provide fresh sand supplies needed to sustain them. "There is definitely a gradation of these islands, based on their wave energy," Lewis said. "The higher the wave energy, probably the bigger and longer the island."

Another difference in fetch-limited barriers is their relative greenness. Surf action is weak enough to allow even wave sensitive mangroves and salt marshes to grow on these islands’ most exposed front sides, Lewis added.

Pilkey said that Lewis did the bulk of the work identifying and classifying these special islands, using extensive satellite surveys and also accompanying Pilkey and Cooper on on-site investigations as far away as Australia and Turkey.

Researchers in Pilkey’s program have spent decades documenting that the major obstacle to the maintenance of classic ocean barrier islands is human beachfront development. Their research shows that development brings obstacles such as seawalls that can interfere with natural processes.

Many fetch-limited barrier islands have escaped human development because they are too small and low or lack the attraction of an ocean view, the Duke researchers said. But development that does exist shares similarities to that on oceanfront barriers.

"Seawalls are really common on Chesapeake Bay," Lewis said. "On the New Jersey side of Delaware Bay, almost every house has a seawall in front of it."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>