Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA satellite sees ocean plants increase, coasts greening


A few years ago, NASA researcher Watson Gregg published a study showing that tiny free-floating ocean plants called phytoplankton had declined in abundance globally by 6 percent between the 1980s and 1990s. A new study by Gregg and his co-authors suggests that trend may not be continuing, and new patterns are taking place.

Why is this important? Well, the tiny ocean plants help regulate our atmosphere and the health of our oceans. Phytoplankton produce half of the oxygen generated by plants on Earth. They also can soften the impacts of climate change by absorbing carbon dioxide, a heat-trapping greenhouse gas. In addition, phytoplankton serve as the base of the ocean food chain, so their abundance determines the overall health of ocean ecosystems. Given their importance, it makes sense that scientists would want to closely track trends in phytoplankton numbers and in how they are distributed around the world.

Gregg and his colleagues published their new study in a recent issue of Geophysical Research Letters. The researchers used NASA satellite data from 1998 to 2003 to show that phytoplankton amounts have increased globally by more than 4 percent. These increases have mainly occurred along the coasts. No significant changes were seen in phytoplankton concentrations within the global open oceans, but phytoplankton levels declined in areas near the center of the oceans, the mid-ocean gyres. Mid-ocean gyres are "ocean deserts", which can only support low amounts of phytoplankton. When viewed by satellite, these phytoplankton-deprived regions look deep-blue, while in aquatic regions where plant life thrives, the water appears greener.

"The ocean deserts are getting bluer and the coasts are getting greener," said Gregg, an oceanographer at NASA’s Goddard Space Flight Center (GSFC), Greenbelt, Md. "The study suggests there may be changes occurring in the biology of the oceans, especially in the coast regions."

Phytoplankton amounts have increased by 10.4 percent along global coast regions, where the ocean floor is less than 200 meters (656 feet) deep. Ocean plant life has greened the most in the Patagonian Shelf and the Bering Sea, and along the coasts of the Eastern Pacific Ocean, Southwest Africa, and near Somalia. Both the Patagonian Shelf and the California/Mexican Shelf showed large increases in phytoplankton concentrations of over 60 percent.

Meanwhile, the researchers observed declines in phytoplankton amounts in five mid-ocean gyres over the six-year study period, including the North and South Atlantic, and North and South Pacific oceans, and a possible new gyre region in the North Central Indian ocean. At the same time, for all but the North Atlantic gyre, sea surface temperatures increased in at least one season. "In the mid-ocean gyres, the downward trends in phytoplankton concentrations do appear related to mid-ocean sea surface temperatures," said Gregg.

Phytoplankton growth is largely dependent on amounts of nutrients and light available to the plants. Warmer water temperatures can create distinct layers in the ocean surface, which allows less of the nutrient-rich, colder deeper water to rise up and mix with sunny surface layers where phytoplankton live. Winds churn and mix the ocean water, carrying nutrient-rich waters to the sunny surface layer, so when winds decline mixing declines, and phytoplankton can suffer.

In a number of open ocean regions, increases in phytoplankton levels countered the declines found in the gyres and other areas. For example, a 72 percent increase in phytoplankton abundance occurred in the Barents Sea. The researchers observed a smaller 17 percent increase in phytoplankton amounts in the Western Central Pacific near Indonesia and the Philippines. The waters cooled in the Western Pacific, while wind stresses increased by 26 percent over the study period. The cooling water and increasing winds are consistent with climate conditions that lead to greater mixing of water.

The six full years of data used in this analysis came from NASA’s Sea-viewing Wide Field-of-view Sensor (SeaWiFS), which detects ocean colors. Chlorophyll is the substance or pigment in plants that appears green and captures energy from sunlight. The sunlight, along with carbon dioxide and water, are processed by the phytoplankton to form carbohydrates for building cells. SeaWiFS measures this greenness. While the study refers to the measurement of chlorophyll a concentrations in the ocean, researchers use the measures of chlorophyll a to estimate amounts of phytoplankton.

While declines in phytoplankton abundance in mid-ocean gyres appear related to warming oceans, a number of factors requiring more study to may be contributing to the coastal increases in plant life. "We don’t know the causes of these coastal increases," said Gregg. "The trends could indicate improved health of the ecosystems as a whole, or they could be a sign of nutrient stress." Causes of nutrient stress include land run-off that deposits agricultural fertilizers and other nutrients in the oceans. The run-off can promote large algal blooms that can deplete the water of oxygen.

Gregg and coauthors caution that the length of time the data cover is too short to answer questions about long term trends, but for the time being the phytoplankton declines in the global oceans observed between the 1980s and 1990s appear to have subsided.

Co-authors on the study include Nancy Casey of Science Systems Applications, Inc., who works at NASA GSFC, and Charles McClain, also a researcher at NASA GSFC.

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>