Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hawaiian volcano may be health risk

01.03.2005


Hawaiian residents who live downwind from the long-active Kilauea volcano may have elevated risks of adverse health conditions because of high levels of sulfur dioxide and aerosol particulates that drift downwind, according to a new study by researchers at Oregon State University and Hawaii.



During a three-week period of average volcanic activity, the researchers measured the sulfur dioxide level in the Kau district south of Kilauea at 17.8 parts per billion – above the minimal risk level of 10 parts per billion, a guideline set by the U.S. Agency for Toxic Substances and Disease Registry. In comparison, Honolulu – located on another island and not in the path of the Kilauea plume – measured just 1.0 ppb during the same time interval. Measurements taken in Los Angeles during that same period averaged a level of 7.0 ppb. Results of the study have been published in the March issue of the journal Geology.

"When Kilauea began erupting in 1983, there were a number of studies that looked at emissions directly from the volcano, but they haven’t looked at the dispersal pattern, or the long-term associated health risk," said Bernadette M. Longo, a recent doctoral graduate in public health at OSU and lead author on the study. "What we found is some cause for concern."


Sulfur dioxide is emitted from Kilauea as a gas and then it begins to change, forming tiny particles and becoming an aerosol. The particle size gradually grows larger and a visible haze develops. About 70 percent of the time, the Pacific tradewinds blow the emissions southward, toward the small communities of Pahala, Na’alehu and Ocean View. Yet what monitoring has been done has taken place in Hilo, north of the volcano, and on the Kona Coast, which is on the other side of the island well down the plume’s path, Longo said.

Longo said sulfur dioxide gas at elevated levels can cause bronchial irritation and trigger asthma attacks in susceptible individuals. Potential health risks expand to a broader section of the public when the gas turns to particulate matter, she pointed out. "The particles can affect lung defenses and the ability to clear material out of the lungs," she said. "They can cause bronchitis. And some of the newest research suggests that prolonged exposure to these particles may be associated with cardiac problems."

Longo, who worked for more than 20 years as a nurse before pursuing her doctorate at Oregon State, has surveyed long-time local residents in communities south of Kilauea to see if they have experienced health problems at a higher rate than other Hawaiians. She has compiled that data and hopes to publish a second paper later this year. Assisting Longo with the study were Anita Grunder, a professor in the OSU Department of Geosciences and an expert in volcanism; Raymond Chuan, a retired physicist in Hawaii who conducted some of the first air assessments of Kilauea in the late 1990s; and Annette Rossignol, a professor in OSU’s Department of Public Health and an epidemiologist.

Grunder said effusive basalt volcanoes – like Kilauea or Masaya in Nicaragua – can emit a great deal of sulfur dioxide into the lower atmosphere even when not erupting. By contrast, Washington’s Mount St. Helens is a dacite volcano that emits sulfur dioxide primarily during eruptions, and even then injects it high into the atmosphere, where the immediate impact on humans is less.

Kilauea is the top "point source" for sulfur dioxide in the United States, the researchers say. "They found that sulfur dioxide from Kilauea in the Kau district is concentrated near the coast and is less at higher elevations," Grunder said. "Aerosol concentrations were the opposite; low at the coast and higher at higher elevation. The SO2 can react with moisture in the lungs to create sulfuric acid. If you flush rain through an SO2 atmosphere, you get acid rain. "Plants don’t like it; cars and signs get rusty," she added. "At Masaya (in Nicaragua), when they hang clothes on the line, they can get holes in their clothes." Grunder said the study has application for millions of people around the world potentially at-risk for exposure to volcanic gas, as well as industrial air pollution.

Longo said the study was conducted during a three-week period in 2003 during which the tradewinds blew in a normal pattern every day, the volcano had average emissions, and it typically rained in the afternoon. In short, she said, the conditions were typical, not extreme.

She found the volcano’s plume moves offshore over the ocean at night, and then comes inland by mid-morning. "If that pattern holds – and we need more data to confirm it – we could identify times when it is best to exercise or work in the garden," Longo said, "as well as times when it might be best to refrain from physical activities."

The island of Hawaii does have a monitoring system and a Vog index, the researchers point out, but it is measured only along the Kona Coast, not in Kau. This "volcano-smog" index – Vog is a locally coined term - also is based on aerosol visibility, not SO2. "Unfortunately, sulfur dioxide is invisible, so people can’t see that they are being exposed," Longo said. "One of our recommendations is to establish monitoring in the region directly south of the volcano, not just in the more heavily populated areas."

Bernadette Longo | EurekAlert!
Further information:
http://www.orst.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>