Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hawaiian volcano may be health risk


Hawaiian residents who live downwind from the long-active Kilauea volcano may have elevated risks of adverse health conditions because of high levels of sulfur dioxide and aerosol particulates that drift downwind, according to a new study by researchers at Oregon State University and Hawaii.

During a three-week period of average volcanic activity, the researchers measured the sulfur dioxide level in the Kau district south of Kilauea at 17.8 parts per billion – above the minimal risk level of 10 parts per billion, a guideline set by the U.S. Agency for Toxic Substances and Disease Registry. In comparison, Honolulu – located on another island and not in the path of the Kilauea plume – measured just 1.0 ppb during the same time interval. Measurements taken in Los Angeles during that same period averaged a level of 7.0 ppb. Results of the study have been published in the March issue of the journal Geology.

"When Kilauea began erupting in 1983, there were a number of studies that looked at emissions directly from the volcano, but they haven’t looked at the dispersal pattern, or the long-term associated health risk," said Bernadette M. Longo, a recent doctoral graduate in public health at OSU and lead author on the study. "What we found is some cause for concern."

Sulfur dioxide is emitted from Kilauea as a gas and then it begins to change, forming tiny particles and becoming an aerosol. The particle size gradually grows larger and a visible haze develops. About 70 percent of the time, the Pacific tradewinds blow the emissions southward, toward the small communities of Pahala, Na’alehu and Ocean View. Yet what monitoring has been done has taken place in Hilo, north of the volcano, and on the Kona Coast, which is on the other side of the island well down the plume’s path, Longo said.

Longo said sulfur dioxide gas at elevated levels can cause bronchial irritation and trigger asthma attacks in susceptible individuals. Potential health risks expand to a broader section of the public when the gas turns to particulate matter, she pointed out. "The particles can affect lung defenses and the ability to clear material out of the lungs," she said. "They can cause bronchitis. And some of the newest research suggests that prolonged exposure to these particles may be associated with cardiac problems."

Longo, who worked for more than 20 years as a nurse before pursuing her doctorate at Oregon State, has surveyed long-time local residents in communities south of Kilauea to see if they have experienced health problems at a higher rate than other Hawaiians. She has compiled that data and hopes to publish a second paper later this year. Assisting Longo with the study were Anita Grunder, a professor in the OSU Department of Geosciences and an expert in volcanism; Raymond Chuan, a retired physicist in Hawaii who conducted some of the first air assessments of Kilauea in the late 1990s; and Annette Rossignol, a professor in OSU’s Department of Public Health and an epidemiologist.

Grunder said effusive basalt volcanoes – like Kilauea or Masaya in Nicaragua – can emit a great deal of sulfur dioxide into the lower atmosphere even when not erupting. By contrast, Washington’s Mount St. Helens is a dacite volcano that emits sulfur dioxide primarily during eruptions, and even then injects it high into the atmosphere, where the immediate impact on humans is less.

Kilauea is the top "point source" for sulfur dioxide in the United States, the researchers say. "They found that sulfur dioxide from Kilauea in the Kau district is concentrated near the coast and is less at higher elevations," Grunder said. "Aerosol concentrations were the opposite; low at the coast and higher at higher elevation. The SO2 can react with moisture in the lungs to create sulfuric acid. If you flush rain through an SO2 atmosphere, you get acid rain. "Plants don’t like it; cars and signs get rusty," she added. "At Masaya (in Nicaragua), when they hang clothes on the line, they can get holes in their clothes." Grunder said the study has application for millions of people around the world potentially at-risk for exposure to volcanic gas, as well as industrial air pollution.

Longo said the study was conducted during a three-week period in 2003 during which the tradewinds blew in a normal pattern every day, the volcano had average emissions, and it typically rained in the afternoon. In short, she said, the conditions were typical, not extreme.

She found the volcano’s plume moves offshore over the ocean at night, and then comes inland by mid-morning. "If that pattern holds – and we need more data to confirm it – we could identify times when it is best to exercise or work in the garden," Longo said, "as well as times when it might be best to refrain from physical activities."

The island of Hawaii does have a monitoring system and a Vog index, the researchers point out, but it is measured only along the Kona Coast, not in Kau. This "volcano-smog" index – Vog is a locally coined term - also is based on aerosol visibility, not SO2. "Unfortunately, sulfur dioxide is invisible, so people can’t see that they are being exposed," Longo said. "One of our recommendations is to establish monitoring in the region directly south of the volcano, not just in the more heavily populated areas."

Bernadette Longo | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>