Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB scientists probe sea floor venting to gain understanding of early life on Earth

01.03.2005


New keys to understanding the evolution of life on Earth may be found in the microbes and minerals vented from below the ocean floor, say scientists at the University of California, Santa Barbara.



The UCSB scientists are making new contributions to this field of inquiry in their studies of seafloor hydrothermal fluid discharge into the Earth’s oceans, which has been occurring ever since the oceans first formed four billion years ago. Conditions below the sea floor may most closely mimic the environment when life began. "There is a great deal of interest in the microbes of the Earth’s crust because the strategies by which they survive may be similar to the earliest strategies of life on Earth, and perhaps also on other planetary bodies," said Rachel M. Haymon, UCSB professor of geology.

Newly discovered geological and biological manifestations of hydrothermal activity at two sites on the sea floor to the west of Central America are reported by Haymon, lead author, and three other UCSB geologists in the February issue of the journal, Geology.


The discovery of deep sea hot springs and an abundance of microbes in the subseafloor are among the most remarkable scientific findings in Earth science during the latter half of the twentieth century, and have now become a powerful motivation for research and exploration, according to the National Science Foundation, a major funder of this work. The NSF explains that subseafloor ecosystems may represent both the cradle of life on Earth and a model for the exploration and discovery of life on other planets. "We are highly conscious of the importance of microbes in the grand scheme of things," said Haymon. "Indeed, they are the greatest biomass on the planet. They are strongly implicated as the earliest life here and perhaps elsewhere."

The direct linkages between life and planetary processes on the volcanically active, deep-sea, mid-ocean ridge system can only be understood through tightly integrated studies across a broad range of disciplines in geophysics, geology, chemistry, biology, and oceanography, according to the NSF.

For this study, Haymon and her UCSB colleagues studied the "flanks" of the mid-ocean ridge, which –– at 40,000 miles long–– is the largest geological feature of Earth, and possibly the solar system. At the mid-ocean ridge the plates comprising the Earth’s lithosphere move apart, lava wells up and freezes to form rock. This is how the sea floor is created.

Haymon is interested in the large region of cooling on the sides of the mid-ocean ridge. Possibly 90 percent of the hydrothermal cooling of the sea floor occurs in these flanks, and yet these hydrothermal vents are largely unexplored. The flanks are deeper than the mid-ocean ridge crest. Cooling of the tectonic plates, and the impact of the ridge flank system on the chemistry of the ocean, are fundamental global-scale processes.

On dives in the submersible Alvin, Haymon and her UCSB colleagues –– Ken C. Macdonald, Sara B. Benjamin, and Christopher J. Ehrhardt –– studied "abyssal" underwater hills that cover a large geomorphic terrain on the ocean floor and are the most common landforms on the Earth. However, little is known about hydrothermal venting from these common features.

The team describes newly discovered geological and biological manifestations of hydrothermal activity at two sites on young abyssal hills flanking the East Pacific Rise, a fast-spreading portion of the global mid-ocean ridge system. These are the first reported manifestation of hydrothermal systems associated with abyssal hills on the flanks of a fast-spreading ridge. "To explain these features, we suggest that abyssal hill hydrothermal venting occurs in frequent bursts, possibly triggered by earthquakes," said Haymon. "Such widespread and oft-repeated pulses of hydrothermal venting may stimulate microbial blooms on abyssal hill fault scarps, thus providing a potential food source for ridge flank biota, and an opportunity for researchers to sample the biosphere below the sea floor."

The sides of abyssal hills are fault escarpments (or scarps) created by vertical uplift of the seafloor during many events of fault slippage that produce frequent earthquakes. The scarps are cliffs that expose and provide access to the subseafloor, without the need for drilling, making it easier to tease out what is living at depth in oceanic crust. The fluids that emerge may come in bursts when earthquakes occur; fluid flow may therefore repeat episodically over hundreds of thousands of years as abyssal hills are uplifted and spread away from the mid-ocean ridge crest.

Haymon compared the subsurface microbes they found to those living in hot springs such as those at Yellowstone National Park.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>