Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB scientists probe sea floor venting to gain understanding of early life on Earth

01.03.2005


New keys to understanding the evolution of life on Earth may be found in the microbes and minerals vented from below the ocean floor, say scientists at the University of California, Santa Barbara.



The UCSB scientists are making new contributions to this field of inquiry in their studies of seafloor hydrothermal fluid discharge into the Earth’s oceans, which has been occurring ever since the oceans first formed four billion years ago. Conditions below the sea floor may most closely mimic the environment when life began. "There is a great deal of interest in the microbes of the Earth’s crust because the strategies by which they survive may be similar to the earliest strategies of life on Earth, and perhaps also on other planetary bodies," said Rachel M. Haymon, UCSB professor of geology.

Newly discovered geological and biological manifestations of hydrothermal activity at two sites on the sea floor to the west of Central America are reported by Haymon, lead author, and three other UCSB geologists in the February issue of the journal, Geology.


The discovery of deep sea hot springs and an abundance of microbes in the subseafloor are among the most remarkable scientific findings in Earth science during the latter half of the twentieth century, and have now become a powerful motivation for research and exploration, according to the National Science Foundation, a major funder of this work. The NSF explains that subseafloor ecosystems may represent both the cradle of life on Earth and a model for the exploration and discovery of life on other planets. "We are highly conscious of the importance of microbes in the grand scheme of things," said Haymon. "Indeed, they are the greatest biomass on the planet. They are strongly implicated as the earliest life here and perhaps elsewhere."

The direct linkages between life and planetary processes on the volcanically active, deep-sea, mid-ocean ridge system can only be understood through tightly integrated studies across a broad range of disciplines in geophysics, geology, chemistry, biology, and oceanography, according to the NSF.

For this study, Haymon and her UCSB colleagues studied the "flanks" of the mid-ocean ridge, which –– at 40,000 miles long–– is the largest geological feature of Earth, and possibly the solar system. At the mid-ocean ridge the plates comprising the Earth’s lithosphere move apart, lava wells up and freezes to form rock. This is how the sea floor is created.

Haymon is interested in the large region of cooling on the sides of the mid-ocean ridge. Possibly 90 percent of the hydrothermal cooling of the sea floor occurs in these flanks, and yet these hydrothermal vents are largely unexplored. The flanks are deeper than the mid-ocean ridge crest. Cooling of the tectonic plates, and the impact of the ridge flank system on the chemistry of the ocean, are fundamental global-scale processes.

On dives in the submersible Alvin, Haymon and her UCSB colleagues –– Ken C. Macdonald, Sara B. Benjamin, and Christopher J. Ehrhardt –– studied "abyssal" underwater hills that cover a large geomorphic terrain on the ocean floor and are the most common landforms on the Earth. However, little is known about hydrothermal venting from these common features.

The team describes newly discovered geological and biological manifestations of hydrothermal activity at two sites on young abyssal hills flanking the East Pacific Rise, a fast-spreading portion of the global mid-ocean ridge system. These are the first reported manifestation of hydrothermal systems associated with abyssal hills on the flanks of a fast-spreading ridge. "To explain these features, we suggest that abyssal hill hydrothermal venting occurs in frequent bursts, possibly triggered by earthquakes," said Haymon. "Such widespread and oft-repeated pulses of hydrothermal venting may stimulate microbial blooms on abyssal hill fault scarps, thus providing a potential food source for ridge flank biota, and an opportunity for researchers to sample the biosphere below the sea floor."

The sides of abyssal hills are fault escarpments (or scarps) created by vertical uplift of the seafloor during many events of fault slippage that produce frequent earthquakes. The scarps are cliffs that expose and provide access to the subseafloor, without the need for drilling, making it easier to tease out what is living at depth in oceanic crust. The fluids that emerge may come in bursts when earthquakes occur; fluid flow may therefore repeat episodically over hundreds of thousands of years as abyssal hills are uplifted and spread away from the mid-ocean ridge crest.

Haymon compared the subsurface microbes they found to those living in hot springs such as those at Yellowstone National Park.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>