Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery of a new natural factor in desertification: Micro-organisms in salt lakes


Salt lake in Southern Russia

Micro-organisms in salt lakes produce chlorinated air pollutants

Salt lakes have a greater impact on climate change than was previously understood. This has been established by scientists from the UFZ Centre for Environmental Research (Umweltforschungszentrum Leipzig-Halle) together with colleagues from Austria, Russia and South Africa. They found evidence that bacteria in salt lakes produce substances which act as greenhouse gases and destroy the ozone layer. These substances are known as volatile halogenated hydrocarbons (VHHs). These spread world-wide through the atmosphere and also damage vegetation.

Scientists previously assumed that VHHs were produced almost exclusively through industrial processes. However, when the pollutant flows in southern Russia were analysed, it was found that there must be natural sources in addition to the industrial ones. This was indicated by increased concentrations of VHH degradation products, which were recorded by scientists in Antarctic ice some years ago. The ice examined was over 250 years old and dates from the pre-industrial age. A search for natural sources of VHHs by an international research group led by Dr Ludwig Weißflog of the UFZ succeeded for the first time in finding evidence of some of these compounds being formed naturally by salt-loving micro-organisms in salt lakes.

The organisms responsible for these processes are among the oldest and hardiest life forms found on earth. The bacteria can easily survive fluctuations in temperature between -25ºC and +35ºC and cannot be destroyed by vacuum or ultraviolet radiation. The crucial factor for the survival of these bacteria is the concentration of salt and water in their environment. If the salt content of the solution is heavily diluted the micro-organisms die.

How do these pollutants affect vegetation?

Within a few days these air pollutants spread throughout the world through the atmosphere. They accumulate in plants and damage them from the inside by blocking the closing mechanism of the stomata in the leaves. This means that a greater quantity of water evaporates, the plant then requires more water and, in extreme cases, will die of thirst. Although VHHs have already been entering the atmosphere from salt lakes for a long time, their damaging effect is amplified by predicted climate change.

Arid areas are particularly affected, because vegetation in these regions reacts more sensitively to air pollutants. Ultimately, soil erosion increases and salt lakes and arid areas expand. Already the southern Russian desert is increasing by 500 square kilometres every year. Climate predictions suggest that the Eurasian steppe belt between Austria and China will continue to grow. Even parts of Brandenburg, Saxony-Anhalt and Saxony must expect increasing aridity in the future. In the last 50 years alone precipitation in northern Saxony in the summer months has declined by up to 25 per cent. The changing climate will mean that the effects of the pollutants already present in the atmosphere will be intensified and thus accelerate the climate-changing processes. Knowledge about the behaviour of environmental pollutants in changed climate conditions is of great importance, in order for strategies to be developed to contain the impacts of climate change.

The research in the salt lakes of the Kalmykian Steppe (southern Russia) and in the Kalahari Desert (South Africa) were supported by the EU, the German and South African research ministries and the Russian Government. The results of the research contribute to the practical implementation of the UN Convention to Combat Desertification.

Tilo Arnhold

Doris Boehme | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>