Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another Look at an Enigmatic New World

25.02.2005


VLT NACO Performs Outstanding Observations of Titan’s Atmosphere and Surface

On January 14, 2005, the ESA Huygens probe arrived at Saturn’s largest satellite, Titan. After a faultless descent through the dense atmosphere, it touched down on the icy surface of this strange world from where it continued to transmit precious data back to the Earth.

Several of the world’s large ground-based telescopes were also active during this exciting event, observing Titan before and near the Huygens encounter, within the framework of a dedicated campaign coordinated by the members of the Huygens Project Scientist Team. Indeed, large astronomical telescopes with state-of-the art adaptive optics systems allow scientists to image Titan’s disc in quite some detail. Moreover, ground-based observations are not restricted to the limited period of the fly-by of Cassini and landing of Huygens. They hence complement ideally the data gathered by this NASA/ESA mission, further optimising the overall scientific return.


A group of astronomers observed Titan with ESO’s Very Large Telescope (VLT) at the Paranal Observatory (Chile) during the nights from 14 to 16 January, by means of the adaptive optics NAOS/CONICA instrument mounted on the 8.2-m Yepun telescope. The observations were carried out in several modes, resulting in a series of fine images and detailed spectra of this mysterious moon. They complement earlier VLT observations of Titan, cf. ESO Press Photos 08/04 and ESO Press Release 09/04.

The highest contrast images

The new images show Titan’s atmosphere and surface at various near-infrared spectral bands. The surface of Titan’s trailing side is visible in images taken through narrow-band filters at wavelengths 1.28, 1.6 and 2.0 microns. They correspond to the so-called "methane windows" which allow to peer all the way through the lower Titan atmosphere to the surface. On the other hand, Titan’s atmosphere is visible through filters centred in the wings of these methane bands, e.g. at 2.12 and 2.17 microns.

Eric Gendron of the Paris Observatory in France and leader of the team, is extremely pleased: "We believe that some of these images are the highest-contrast images of Titan ever taken with any ground-based or earth-orbiting telescope."

The excellent images of Titan’s surface show the location of the Huygens landing site in much detail. In particular, those centred at wavelength 1.6 micron and obtained with the Simultaneous Differential Imager (SDI) on NACO [4] provide the highest contrast and best views. This is firstly because the filters match the 1.6 micron methane window most accurately. Secondly, it is possible to get an even clearer view of the surface by subtracting accurately the simultaneously recorded images of the atmospheric haze, taken at wavelength 1.625 micron.

The images show the great complexity of Titan’s trailing side, which was earlier thought to be very dark. However, it is now obvious that bright and dark regions cover the field of these images.

The best resolution achieved on the surface features is about 0.039 arcsec, corresponding to 200 km on Titan. ESO PR Photo 04c/04 illustrates the striking agreement between the NACO/SDI image taken with the VLT from the ground and the ISS/Cassini map.

The images of Titan’s atmosphere at 2.12 microns show a still-bright south pole with an additional atmospheric bright feature, which may be clouds or some other meteorological phenomena. The astronomers have followed it since 2002 with NACO and notice that it seems to be fading with time. At 2.17 microns, this feature is not visible and the north-south asymmetry - also known as "Titan’s smile" - is clearly in favour in the north. The two filters probe different altitude levels and the images thus provide information about the extent and evolution of the north-south asymmetry.

Probing the composition of the surface

Because the astronomers have also obtained spectroscopic data at different wavelengths, they will be able to recover useful information on the surface composition.

The Cassini/VIMS instrument explores Titan’s surface in the infrared range and, being so close to this moon, it obtains spectra with a much better spatial resolution than what is possible with Earth-based telescopes. However, with NACO at the VLT, the astronomers have the advantage of observing Titan with considerably higher spectral resolution, and thus to gain more detailed spectral information about the composition, etc. The observations therefore complement each other.

Once the composition of the surface at the location of the Huygens landing is known from the detailed analysis of the in-situ measurements, it should become possible to learn the nature of the surface features elsewhere on Titan by combining the Huygens results with more extended cartography from Cassini as well as from VLT observations to come.

More information

Results on Titan obtained with data from NACO/VLT are in press in the journal Icarus ("Maps of Titan’s surface from 1 to 2.5 micron" by A. Coustenis et al.). Previous images of Titan obtained with NACO and with NACO/SDI are accessible as ESO PR Photos 08/04 and ESO PR Photos 11/04. See also these Press Releases for additional scientific references.

Notes

[1]: The team is composed of Eric Gendron, Athena Coustenis, Mathieu Hirtzig, Michel Combes, Pierre Drossart, and Alberto Negrao (LESIA, Paris-Meudon Observatory, France), Pascal Rannou (Univ. de Versailles, France), Markus Hartung (ESO), Tom Herbst (Max-Planck Institute for Astronomy, Heidelberg, Germany), Tobias Owen (IfA, Hawaii), Laird Close (University of Arizona, USA), Olivier Witasse and Jean-Pierre Lebreton (ESA/ESTEC).

[2]: Adaptive Optics (AO) systems work by means of a computer-controlled deformable mirror that counteracts the image distortion induced by atmospheric turbulence. Adaptive Optics is based on real-time optical corrections computed from image data obtained by a special camera at very high speed, many hundreds of times each second (see e.g. ESO Press Release 25/01 , ESO PR Photos 04a-c/02, ESO PR Photos 19a-c/02, ESO PR Photos 21a-c/02, ESO Press Release 17/02, and ESO Press Release 26/03 for earlier NACO images, and ESO Press Release 11/03 for MACAO-VLTI results).

[3]: Titan is tidally-locked to Saturn, and hence always presents the same face towards the planet. To image all sides of Titan (from the Earth) therefore requires observations during almost one entire orbital period, 16 days. The trailing hemisphere is the one we see when Titan moves away from us in its course around Saturn. The leading hemisphere is the one on the other side.

[4]: The Simultaneous Differential Imager is a novel optical device that provides four simultaneous high-resolution images at three wavelengths around a near-infrared atmospheric methane absorption feature. The main application of the SDI is high-contrast imaging for the search for substellar companions with methane in their atmosphere, e.g. brown dwarfs and giant exoplanets, near other stars. However, as the present photos demonstrate, it is also superbly suited for Titan imaging. (see ESO PR 09/04 and PR 02/05 for more details).

Richard West | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2005/phot-04-05.html
http://www.eso.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>