Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists discover clockwork motion by ocean floor microplates

24.02.2005


A team of geologists from Duke University and the Woods Hole Oceanographic Institution has discovered a grinding, coordinated ballet of crustal "microplates" unfolding below the equatorial east Pacific Ocean within a construction zone for new seafloor.



The scientists deduced that relatively small sections of the ocean floor there, and perhaps in other similar places, may be slowly rotating like imperfectly meshing cogs in a machine. The unexpected findings provide new insights into the way several ocean ridge segments that border the microplates evolved into their current positions to form part of what is known as a "triple junction," according to the researchers. And these results may be applicable to systems elsewhere, they added. "As often happens in science, what you think you’re going to learn doesn’t always end up being the exciting thing that you learn," said Emily Klein, the Lee Hill Snowdon Professor at Duke’s Nicholas School of the Environment and Earth Sciences, who is the lead author of a report on the findings published in the Thursday, February 24, 2005 issue of the journal Nature.

Other authors include Deborah Smith, Clare Williams and Hans Schouten of the Woods Hole Oceanographic Institution in Massachusetts. The group’s study, begun aboard the San Diego-based research ship R/V Melville, was supported by the National Science Foundation. Klein, whose specialty is geochemistry, said the scientists’ original focus was the chemistry and structure of the Incipient Rift, the smallest and newest of four ocean ridge segments in a region of the ocean floor northwest of the Galapagos Islands. Ocean ridges are linear features on the ocean floor where molten magma originating in the earth’s mantle rises and solidifies to form new ocean crust.


The Incipient Rift and other ridge segments in the area intersect with the East Pacific Rise, part of a globe-circling mid-ocean ridge system and the region’s largest ocean crust producer. All these intersecting ridge segments also form parts of boundaries separating what the study revealed to be subsections of the Galapagos Microplate, which wedges between three other larger plates in the region’s complex ocean floor topography. "The exciting story is about the tectonics and the kinematics of the whole Galapagos microplate, which before our cruise was little understood," Klein said in an interview. Tectonics are the crustal deformation of plates; kinematics describe their motion over the mantle. "The Galapagos microplate shares a complex plate boundary configuration with the surrounding Cocos, Nazca and Pacific plates. We learned a lot on this cruise and have many new questions to pursue," Smith said of the study.

At the outset, the scientists grew puzzled when they began analyzing data from sensitive sonar beams they were using to map the extremely jumbled terrain of previously uncharted geological features along the Incipient Rift. A previous study by other researchers led them to expect that rift would grow consistently wider, in the manner of a ship’s wake, as they mapped increasingly eastward from the East Pacific Rise. Instead, their sonar imaging showed the rift becoming narrower and deeper as their distance from the East Pacific Rise grew larger. Narrowing at both ends and widest in the middle, the trough thus assumed the overall shape of an elongated diamond -- which they termed a "lozenge." That finding implied that more complex dynamics are at work there, said Klein.

Meanwhile, underwater photography and rock magnetic measurements by the group suggested that molten lava was periodically erupting within the area where the Incipient Rift re-narrows. Such eruptions would provide further evidence for "active rifting and continuing reorganization of the microplate’s boundary," Klein said. Using those collective observations, Smith, Schouten and Williams of Woods Hole applied their own expertise in modeling to deduce the likely present, past and future motion of the Incipient Rift and the Galapagos microplate it borders. In the process, the scientists found that "what was previously considered one coherent microplate must, in fact, form two separate microplates," according to the Nature report. They also deduced that those separate Galapagos microplates should be "rotating," and turning "in opposite directions."

Duke’s Klein and the Woods Hole modelers then went on to infer the kinematics of these contiguous microplates. Both microplates appeared to be turning -- the northern one counter-clockwise and the southern one clockwise -- in a coordinated way, reported the Nature report’s authors, who located likely rotating points on each of the three ocean ridge segments. Eventually, further rifting may force the Incipient Rift to cut further from the East Pacific Rise in a direction that pierces the walls of an adjoining rift. If that happens, the "driving torque" will cease, "and the microplates will stop rotating," the Nature report authors predicted. "It’s like ball bearings moving past each other," Klein said. "This finding has huge implications for how complex plate boundaries interact and evolve and change their orientations and kinematics through time."

The key is "edge driven" action caused by the microplate rotations, according to the paper. But what drives the rotations themselves remains "truly an unanswered question," Klein acknowledged.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>