Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists discover clockwork motion by ocean floor microplates

24.02.2005


A team of geologists from Duke University and the Woods Hole Oceanographic Institution has discovered a grinding, coordinated ballet of crustal "microplates" unfolding below the equatorial east Pacific Ocean within a construction zone for new seafloor.



The scientists deduced that relatively small sections of the ocean floor there, and perhaps in other similar places, may be slowly rotating like imperfectly meshing cogs in a machine. The unexpected findings provide new insights into the way several ocean ridge segments that border the microplates evolved into their current positions to form part of what is known as a "triple junction," according to the researchers. And these results may be applicable to systems elsewhere, they added. "As often happens in science, what you think you’re going to learn doesn’t always end up being the exciting thing that you learn," said Emily Klein, the Lee Hill Snowdon Professor at Duke’s Nicholas School of the Environment and Earth Sciences, who is the lead author of a report on the findings published in the Thursday, February 24, 2005 issue of the journal Nature.

Other authors include Deborah Smith, Clare Williams and Hans Schouten of the Woods Hole Oceanographic Institution in Massachusetts. The group’s study, begun aboard the San Diego-based research ship R/V Melville, was supported by the National Science Foundation. Klein, whose specialty is geochemistry, said the scientists’ original focus was the chemistry and structure of the Incipient Rift, the smallest and newest of four ocean ridge segments in a region of the ocean floor northwest of the Galapagos Islands. Ocean ridges are linear features on the ocean floor where molten magma originating in the earth’s mantle rises and solidifies to form new ocean crust.


The Incipient Rift and other ridge segments in the area intersect with the East Pacific Rise, part of a globe-circling mid-ocean ridge system and the region’s largest ocean crust producer. All these intersecting ridge segments also form parts of boundaries separating what the study revealed to be subsections of the Galapagos Microplate, which wedges between three other larger plates in the region’s complex ocean floor topography. "The exciting story is about the tectonics and the kinematics of the whole Galapagos microplate, which before our cruise was little understood," Klein said in an interview. Tectonics are the crustal deformation of plates; kinematics describe their motion over the mantle. "The Galapagos microplate shares a complex plate boundary configuration with the surrounding Cocos, Nazca and Pacific plates. We learned a lot on this cruise and have many new questions to pursue," Smith said of the study.

At the outset, the scientists grew puzzled when they began analyzing data from sensitive sonar beams they were using to map the extremely jumbled terrain of previously uncharted geological features along the Incipient Rift. A previous study by other researchers led them to expect that rift would grow consistently wider, in the manner of a ship’s wake, as they mapped increasingly eastward from the East Pacific Rise. Instead, their sonar imaging showed the rift becoming narrower and deeper as their distance from the East Pacific Rise grew larger. Narrowing at both ends and widest in the middle, the trough thus assumed the overall shape of an elongated diamond -- which they termed a "lozenge." That finding implied that more complex dynamics are at work there, said Klein.

Meanwhile, underwater photography and rock magnetic measurements by the group suggested that molten lava was periodically erupting within the area where the Incipient Rift re-narrows. Such eruptions would provide further evidence for "active rifting and continuing reorganization of the microplate’s boundary," Klein said. Using those collective observations, Smith, Schouten and Williams of Woods Hole applied their own expertise in modeling to deduce the likely present, past and future motion of the Incipient Rift and the Galapagos microplate it borders. In the process, the scientists found that "what was previously considered one coherent microplate must, in fact, form two separate microplates," according to the Nature report. They also deduced that those separate Galapagos microplates should be "rotating," and turning "in opposite directions."

Duke’s Klein and the Woods Hole modelers then went on to infer the kinematics of these contiguous microplates. Both microplates appeared to be turning -- the northern one counter-clockwise and the southern one clockwise -- in a coordinated way, reported the Nature report’s authors, who located likely rotating points on each of the three ocean ridge segments. Eventually, further rifting may force the Incipient Rift to cut further from the East Pacific Rise in a direction that pierces the walls of an adjoining rift. If that happens, the "driving torque" will cease, "and the microplates will stop rotating," the Nature report authors predicted. "It’s like ball bearings moving past each other," Klein said. "This finding has huge implications for how complex plate boundaries interact and evolve and change their orientations and kinematics through time."

The key is "edge driven" action caused by the microplate rotations, according to the paper. But what drives the rotations themselves remains "truly an unanswered question," Klein acknowledged.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>