Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Geologists discover clockwork motion by ocean floor microplates


A team of geologists from Duke University and the Woods Hole Oceanographic Institution has discovered a grinding, coordinated ballet of crustal "microplates" unfolding below the equatorial east Pacific Ocean within a construction zone for new seafloor.

The scientists deduced that relatively small sections of the ocean floor there, and perhaps in other similar places, may be slowly rotating like imperfectly meshing cogs in a machine. The unexpected findings provide new insights into the way several ocean ridge segments that border the microplates evolved into their current positions to form part of what is known as a "triple junction," according to the researchers. And these results may be applicable to systems elsewhere, they added. "As often happens in science, what you think you’re going to learn doesn’t always end up being the exciting thing that you learn," said Emily Klein, the Lee Hill Snowdon Professor at Duke’s Nicholas School of the Environment and Earth Sciences, who is the lead author of a report on the findings published in the Thursday, February 24, 2005 issue of the journal Nature.

Other authors include Deborah Smith, Clare Williams and Hans Schouten of the Woods Hole Oceanographic Institution in Massachusetts. The group’s study, begun aboard the San Diego-based research ship R/V Melville, was supported by the National Science Foundation. Klein, whose specialty is geochemistry, said the scientists’ original focus was the chemistry and structure of the Incipient Rift, the smallest and newest of four ocean ridge segments in a region of the ocean floor northwest of the Galapagos Islands. Ocean ridges are linear features on the ocean floor where molten magma originating in the earth’s mantle rises and solidifies to form new ocean crust.

The Incipient Rift and other ridge segments in the area intersect with the East Pacific Rise, part of a globe-circling mid-ocean ridge system and the region’s largest ocean crust producer. All these intersecting ridge segments also form parts of boundaries separating what the study revealed to be subsections of the Galapagos Microplate, which wedges between three other larger plates in the region’s complex ocean floor topography. "The exciting story is about the tectonics and the kinematics of the whole Galapagos microplate, which before our cruise was little understood," Klein said in an interview. Tectonics are the crustal deformation of plates; kinematics describe their motion over the mantle. "The Galapagos microplate shares a complex plate boundary configuration with the surrounding Cocos, Nazca and Pacific plates. We learned a lot on this cruise and have many new questions to pursue," Smith said of the study.

At the outset, the scientists grew puzzled when they began analyzing data from sensitive sonar beams they were using to map the extremely jumbled terrain of previously uncharted geological features along the Incipient Rift. A previous study by other researchers led them to expect that rift would grow consistently wider, in the manner of a ship’s wake, as they mapped increasingly eastward from the East Pacific Rise. Instead, their sonar imaging showed the rift becoming narrower and deeper as their distance from the East Pacific Rise grew larger. Narrowing at both ends and widest in the middle, the trough thus assumed the overall shape of an elongated diamond -- which they termed a "lozenge." That finding implied that more complex dynamics are at work there, said Klein.

Meanwhile, underwater photography and rock magnetic measurements by the group suggested that molten lava was periodically erupting within the area where the Incipient Rift re-narrows. Such eruptions would provide further evidence for "active rifting and continuing reorganization of the microplate’s boundary," Klein said. Using those collective observations, Smith, Schouten and Williams of Woods Hole applied their own expertise in modeling to deduce the likely present, past and future motion of the Incipient Rift and the Galapagos microplate it borders. In the process, the scientists found that "what was previously considered one coherent microplate must, in fact, form two separate microplates," according to the Nature report. They also deduced that those separate Galapagos microplates should be "rotating," and turning "in opposite directions."

Duke’s Klein and the Woods Hole modelers then went on to infer the kinematics of these contiguous microplates. Both microplates appeared to be turning -- the northern one counter-clockwise and the southern one clockwise -- in a coordinated way, reported the Nature report’s authors, who located likely rotating points on each of the three ocean ridge segments. Eventually, further rifting may force the Incipient Rift to cut further from the East Pacific Rise in a direction that pierces the walls of an adjoining rift. If that happens, the "driving torque" will cease, "and the microplates will stop rotating," the Nature report authors predicted. "It’s like ball bearings moving past each other," Klein said. "This finding has huge implications for how complex plate boundaries interact and evolve and change their orientations and kinematics through time."

The key is "edge driven" action caused by the microplate rotations, according to the paper. But what drives the rotations themselves remains "truly an unanswered question," Klein acknowledged.

Monte Basgall | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>