Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Global warming led to atmospheric hydrogen sulfide and Permian extinction


Volcanic eruptions in Siberia 251 million years ago may have started a cascade of events leading to high hydrogen sulfide levels in the oceans and atmosphere and precipitating the largest mass extinction in Earth’s history, according to a Penn State geoscientist.

"The recent dating of the Siberian trap volcanoes to be contemporaneous with the end-Permian extinction suggests that they were the trigger for the environmental events that caused the extinctions," says Dr. Lee R. Kump, professor of geosciences. "But the warming caused by these volcanoes through carbon dioxide emissions would not be large enough to cause mass extinctions by itself."

That warming, however, could set off a series of events that led to mass extinction. During the end-Permian extinction 95 percent of all species on Earth became extinct, compared to only 75 percent during the K-T when a large asteroid apparently caused the dinosaurs to disappear.

Volcanic carbon dioxide would cause atmospheric warming that would, in turn, warm surface ocean water. Normally, the deep ocean gets its oxygen from the atmosphere at the poles. Cold water there soaks up oxygen from the air and because cold water is dense, it sinks and slowly moves equator-ward, taking oxygen with it. The warmer the water, the less oxygen can dissolve and the slower the water sinks and moves toward the equator. "Warmer water slows the conveyer belt and brings less oxygen to the deep oceans," says Kump.

The constant rain of organic debris produced by marine plants and animals, needs oxygen to decompose. With less oxygen, fewer organics are aerobically consumed. "Today, there are not enough organics in the oceans to go anoxic," says Kump. "But in the Permian, if the warming from the volcanic carbon dioxide decreased oceanic oxygen, especially if atmospheric oxygen levels were lower, the oceans would be depleted of oxygen." Once the oxygen is gone, the oceans become the realm of bacteria that obtain their oxygen from sulfur oxide compounds. These bacteria strip oxygen from the compounds and produce hydrogen sulfide. Hydrogen sulfide kills aerobic organisms.

Humans can smell hydrogen sulfide gas, the smell of rotten cabbage, in the parts per trillion range. In the deeps of the Black Sea today, hydrogen sulfide exists at about 200 parts per million. This is a toxic brew in which any aerobic, oxygen-needing organism would die. For the Black Sea, the hydrogen sulfide stays in the depths because our rich oxygen atmosphere mixes in the top layer of water and controls the diffusion of hydrogen sulfide upwards.

In the end-Permian, as the levels of atmospheric oxygen fell and the levels of hydrogen sulfide and carbon dioxide rose, the upper levels of the oceans could have become rich in hydrogen sulfide catastrophically. This would kill most the oceanic plants and animals. The hydrogen sulfide dispersing in the atmosphere would kill most terrestrial life.

"A hydrogen sulfide atmosphere fits the extinction better than one enriched in carbon dioxide," says Kump. "Carbon dioxide would have a profound effect on marine life, but terrestrial plants thrive on carbon dioxide, yet they are included in the extinction." Another piece in the puzzle surrounding this extinction is that hydrogen sulfide gas destroys the ozone layer. Recently, Dr. Henk Visscher of Utrecht University and his colleagues suggested that there are fossil spores from the end-Permian that show deformities that researchers suspect were caused by ultra violet light. "These deformities fit the idea that the ozone layer was damaged, letting in more ultra violet," says Kump.

Once this process is underway, methane produced in the ample swamps of this time period has little in the atmosphere to destroy it. The atmosphere becomes one of hydrogen sulfide, methane and ultra violet radiation.

The Penn State researcher and his colleagues are looking for biomarkers, indications of photosynthetic sulfur bacteria in deep-sea sediments to complement such biomarkers recently reported in shallow water sediments of this age by Kliti Grice, Curtin University of Technology, Australia, and colleagues in the Feb. 4 issue of the journal, Science. These bacteria live in places where no oxygen exists, but there is some sunlight. They would have been in their heyday in the end-Permian. Finding evidence of green sulfur bacteria would provide evidence for hydrogen sulfide as the cause of the mass extinctions.

A’ndrea Elyse Messer | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>