Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming led to atmospheric hydrogen sulfide and Permian extinction

21.02.2005


Volcanic eruptions in Siberia 251 million years ago may have started a cascade of events leading to high hydrogen sulfide levels in the oceans and atmosphere and precipitating the largest mass extinction in Earth’s history, according to a Penn State geoscientist.



"The recent dating of the Siberian trap volcanoes to be contemporaneous with the end-Permian extinction suggests that they were the trigger for the environmental events that caused the extinctions," says Dr. Lee R. Kump, professor of geosciences. "But the warming caused by these volcanoes through carbon dioxide emissions would not be large enough to cause mass extinctions by itself."

That warming, however, could set off a series of events that led to mass extinction. During the end-Permian extinction 95 percent of all species on Earth became extinct, compared to only 75 percent during the K-T when a large asteroid apparently caused the dinosaurs to disappear.


Volcanic carbon dioxide would cause atmospheric warming that would, in turn, warm surface ocean water. Normally, the deep ocean gets its oxygen from the atmosphere at the poles. Cold water there soaks up oxygen from the air and because cold water is dense, it sinks and slowly moves equator-ward, taking oxygen with it. The warmer the water, the less oxygen can dissolve and the slower the water sinks and moves toward the equator. "Warmer water slows the conveyer belt and brings less oxygen to the deep oceans," says Kump.

The constant rain of organic debris produced by marine plants and animals, needs oxygen to decompose. With less oxygen, fewer organics are aerobically consumed. "Today, there are not enough organics in the oceans to go anoxic," says Kump. "But in the Permian, if the warming from the volcanic carbon dioxide decreased oceanic oxygen, especially if atmospheric oxygen levels were lower, the oceans would be depleted of oxygen." Once the oxygen is gone, the oceans become the realm of bacteria that obtain their oxygen from sulfur oxide compounds. These bacteria strip oxygen from the compounds and produce hydrogen sulfide. Hydrogen sulfide kills aerobic organisms.

Humans can smell hydrogen sulfide gas, the smell of rotten cabbage, in the parts per trillion range. In the deeps of the Black Sea today, hydrogen sulfide exists at about 200 parts per million. This is a toxic brew in which any aerobic, oxygen-needing organism would die. For the Black Sea, the hydrogen sulfide stays in the depths because our rich oxygen atmosphere mixes in the top layer of water and controls the diffusion of hydrogen sulfide upwards.

In the end-Permian, as the levels of atmospheric oxygen fell and the levels of hydrogen sulfide and carbon dioxide rose, the upper levels of the oceans could have become rich in hydrogen sulfide catastrophically. This would kill most the oceanic plants and animals. The hydrogen sulfide dispersing in the atmosphere would kill most terrestrial life.

"A hydrogen sulfide atmosphere fits the extinction better than one enriched in carbon dioxide," says Kump. "Carbon dioxide would have a profound effect on marine life, but terrestrial plants thrive on carbon dioxide, yet they are included in the extinction." Another piece in the puzzle surrounding this extinction is that hydrogen sulfide gas destroys the ozone layer. Recently, Dr. Henk Visscher of Utrecht University and his colleagues suggested that there are fossil spores from the end-Permian that show deformities that researchers suspect were caused by ultra violet light. "These deformities fit the idea that the ozone layer was damaged, letting in more ultra violet," says Kump.

Once this process is underway, methane produced in the ample swamps of this time period has little in the atmosphere to destroy it. The atmosphere becomes one of hydrogen sulfide, methane and ultra violet radiation.

The Penn State researcher and his colleagues are looking for biomarkers, indications of photosynthetic sulfur bacteria in deep-sea sediments to complement such biomarkers recently reported in shallow water sediments of this age by Kliti Grice, Curtin University of Technology, Australia, and colleagues in the Feb. 4 issue of the journal, Science. These bacteria live in places where no oxygen exists, but there is some sunlight. They would have been in their heyday in the end-Permian. Finding evidence of green sulfur bacteria would provide evidence for hydrogen sulfide as the cause of the mass extinctions.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>