Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seismic rocker aims to cut the noise


A Canadian seismologist is arguing that our understanding of the structure of the Earth’s interior is based on the equivalent of fuzzy ultrasound images that leave room for improvement.

Once seismic images are fine-tuned to remove background noise, they may tell a very different story of the world below, says Dr. Felix Herrmann, a seismologist at the University of British Columbia. And oil companies are already lining up to cash in on his clearer view of the Earth’s underbelly.

Dr. Herrmann says that there has been a push to gather more data from beneath the ground through initiatives such as US ARRAY, but that these data cannot be properly used without a better understanding of how seismic images are produced.

Until now, he says, scientists have interpreted transitions in the mantle in terms of changes in a complex cocktail of substances below the earth’s surface. However, he says, his research has led to a theory that, instead of this accepted complex mineralogical composition, the seismic data could be showing a complex interplay of only two different types of substances.

"Think of what happens when you mix a French and a Swiss cheese," says Dr. Herrmann. "You have Swiss cheese and you start to mix in more and more French cheese. At some point, you would call it a French cheese. When this happens, basically there is a critical point. That’s a point where all of a sudden the material starts to become like the French cheese – and a sharp transition occurs, whose fine structure we hope to observe from noisy seismic data."

He will present the results of his latest seismic imaging research at the 2005 American Association for the Advancement of Science meeting in Washington D.C. on February 19.

With seismic imaging, scientists bounce sound waves into the Earth, or record natural tremors, and use the reflected waves to construct an image of the Earth’s interior structure in much the same way that ultrasound technology enables us to peer into the womb and see a fetus.

But Dr. Herrmann says that previous seismic images of the Earth’s interior were distorted by noise. Noise is created by things like tremors, wind or even a truck driving on the surface, as well as by flaws in measuring devices and mathematical models.

As a result, while we were expecting to be painting in geological blue, we should really be thinking in an earthy pink. "What I’m proposing is certainly a different way of thinking," says Dr. Herrmann.

While the scientific world has yet to fully adopt Dr. Herrmann’s view, oil companies are eagerly taking a closer look at his "de-noising" and mixture-model techniques. His seismic imaging research has led to a recent partnership with four large oil companies to use these clearer imaging techniques to find the world’s most elusive oil patches.

"Oil prices are not high for nothing," notes Dr. Herrmann. "It’s more and more difficult to find petroleum resources. The big oil fields have been found, and now people want to find smaller fields. That means we need to look with a finer resolution, and also to look deeper."

We also need to better understand what we see in these images, he adds.

"That’s where both the ’cheese model’ and noise come in, because noise limits how fine a structure you can actually resolve to learn about these rapid changes in the Earth’s properties."

Dr. Herrmann’s new theory of the earth’s transitions, co-written with MIT’s Dr. Yves Bernabé, was published in the December 2004 issue of Geophysical Journal International.

Dr. Felix Herrmann | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>