Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic rocker aims to cut the noise

21.02.2005


A Canadian seismologist is arguing that our understanding of the structure of the Earth’s interior is based on the equivalent of fuzzy ultrasound images that leave room for improvement.



Once seismic images are fine-tuned to remove background noise, they may tell a very different story of the world below, says Dr. Felix Herrmann, a seismologist at the University of British Columbia. And oil companies are already lining up to cash in on his clearer view of the Earth’s underbelly.

Dr. Herrmann says that there has been a push to gather more data from beneath the ground through initiatives such as US ARRAY, but that these data cannot be properly used without a better understanding of how seismic images are produced.


Until now, he says, scientists have interpreted transitions in the mantle in terms of changes in a complex cocktail of substances below the earth’s surface. However, he says, his research has led to a theory that, instead of this accepted complex mineralogical composition, the seismic data could be showing a complex interplay of only two different types of substances.

"Think of what happens when you mix a French and a Swiss cheese," says Dr. Herrmann. "You have Swiss cheese and you start to mix in more and more French cheese. At some point, you would call it a French cheese. When this happens, basically there is a critical point. That’s a point where all of a sudden the material starts to become like the French cheese – and a sharp transition occurs, whose fine structure we hope to observe from noisy seismic data."

He will present the results of his latest seismic imaging research at the 2005 American Association for the Advancement of Science meeting in Washington D.C. on February 19.

With seismic imaging, scientists bounce sound waves into the Earth, or record natural tremors, and use the reflected waves to construct an image of the Earth’s interior structure in much the same way that ultrasound technology enables us to peer into the womb and see a fetus.

But Dr. Herrmann says that previous seismic images of the Earth’s interior were distorted by noise. Noise is created by things like tremors, wind or even a truck driving on the surface, as well as by flaws in measuring devices and mathematical models.

As a result, while we were expecting to be painting in geological blue, we should really be thinking in an earthy pink. "What I’m proposing is certainly a different way of thinking," says Dr. Herrmann.

While the scientific world has yet to fully adopt Dr. Herrmann’s view, oil companies are eagerly taking a closer look at his "de-noising" and mixture-model techniques. His seismic imaging research has led to a recent partnership with four large oil companies to use these clearer imaging techniques to find the world’s most elusive oil patches.

"Oil prices are not high for nothing," notes Dr. Herrmann. "It’s more and more difficult to find petroleum resources. The big oil fields have been found, and now people want to find smaller fields. That means we need to look with a finer resolution, and also to look deeper."

We also need to better understand what we see in these images, he adds.

"That’s where both the ’cheese model’ and noise come in, because noise limits how fine a structure you can actually resolve to learn about these rapid changes in the Earth’s properties."

Dr. Herrmann’s new theory of the earth’s transitions, co-written with MIT’s Dr. Yves Bernabé, was published in the December 2004 issue of Geophysical Journal International.

Dr. Felix Herrmann | EurekAlert!
Further information:
http://www.eos.ubc.ca

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>