Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic rocker aims to cut the noise

21.02.2005


A Canadian seismologist is arguing that our understanding of the structure of the Earth’s interior is based on the equivalent of fuzzy ultrasound images that leave room for improvement.



Once seismic images are fine-tuned to remove background noise, they may tell a very different story of the world below, says Dr. Felix Herrmann, a seismologist at the University of British Columbia. And oil companies are already lining up to cash in on his clearer view of the Earth’s underbelly.

Dr. Herrmann says that there has been a push to gather more data from beneath the ground through initiatives such as US ARRAY, but that these data cannot be properly used without a better understanding of how seismic images are produced.


Until now, he says, scientists have interpreted transitions in the mantle in terms of changes in a complex cocktail of substances below the earth’s surface. However, he says, his research has led to a theory that, instead of this accepted complex mineralogical composition, the seismic data could be showing a complex interplay of only two different types of substances.

"Think of what happens when you mix a French and a Swiss cheese," says Dr. Herrmann. "You have Swiss cheese and you start to mix in more and more French cheese. At some point, you would call it a French cheese. When this happens, basically there is a critical point. That’s a point where all of a sudden the material starts to become like the French cheese – and a sharp transition occurs, whose fine structure we hope to observe from noisy seismic data."

He will present the results of his latest seismic imaging research at the 2005 American Association for the Advancement of Science meeting in Washington D.C. on February 19.

With seismic imaging, scientists bounce sound waves into the Earth, or record natural tremors, and use the reflected waves to construct an image of the Earth’s interior structure in much the same way that ultrasound technology enables us to peer into the womb and see a fetus.

But Dr. Herrmann says that previous seismic images of the Earth’s interior were distorted by noise. Noise is created by things like tremors, wind or even a truck driving on the surface, as well as by flaws in measuring devices and mathematical models.

As a result, while we were expecting to be painting in geological blue, we should really be thinking in an earthy pink. "What I’m proposing is certainly a different way of thinking," says Dr. Herrmann.

While the scientific world has yet to fully adopt Dr. Herrmann’s view, oil companies are eagerly taking a closer look at his "de-noising" and mixture-model techniques. His seismic imaging research has led to a recent partnership with four large oil companies to use these clearer imaging techniques to find the world’s most elusive oil patches.

"Oil prices are not high for nothing," notes Dr. Herrmann. "It’s more and more difficult to find petroleum resources. The big oil fields have been found, and now people want to find smaller fields. That means we need to look with a finer resolution, and also to look deeper."

We also need to better understand what we see in these images, he adds.

"That’s where both the ’cheese model’ and noise come in, because noise limits how fine a structure you can actually resolve to learn about these rapid changes in the Earth’s properties."

Dr. Herrmann’s new theory of the earth’s transitions, co-written with MIT’s Dr. Yves Bernabé, was published in the December 2004 issue of Geophysical Journal International.

Dr. Felix Herrmann | EurekAlert!
Further information:
http://www.eos.ubc.ca

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>