Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming world could worsen pollution in Northeast, Midwest

21.02.2005


Harvard researcher to report at AAAS meeting on projected decline in cleansing summer winds



While science’s conventional wisdom holds that pollution feeds global warming, new research suggests that the reverse could also occur: A warming globe could stifle summer’s cleansing winds over the Northeast and Midwest over the next 50 years, significantly worsening air pollution in these regions.

Loretta J. Mickley, a research associate at Harvard University’s Division of Engineering and Applied Sciences, will report on these findings Saturday, Feb. 19, at the annual meeting of the American Association for the Advancement of Science in Washington, D.C. Her work is based on modeling of the impact of increasing greenhouse gas concentrations on pollution events across the United States through 2050.


Using this model, Mickley and colleagues found that the frequency of cold fronts bringing cool, clear air out of Canada during summer months declined about 20 percent. These cold fronts, Mickley said, are responsible for breaking up hot, stagnant air that builds up regularly in summer, generating high levels of ground-level ozone pollution. "The air just cooks," Mickley says. "The pollution accumulates, accumulates, accumulates, until a cold front comes in and the winds sweep it away."

Ozone is beneficial when found high in the atmosphere because it absorbs cancer-causing ultraviolet radiation. Near the ground, however, high concentrations are considered a pollutant, irritating sensitive tissues, particularly lung tissues.

"If this model is correct, global warming would cause an increase in difficult days for those affected by ozone pollution, such as people suffering with respiratory illnesses like asthma and those doing physical labor or exercising outdoors," Mickley says.

Mickley and her colleagues used a complex computer model developed by the Goddard Institute for Space Studies in New York, with further changes devised by her team at Harvard. It takes known elements such as the sun’s luminosity, the earth’s topography, the distribution of the oceans, the pull of gravity and the tilt of the earth’s axis, and figures in variables provided by researchers.

Mickley gradually increased levels of greenhouse gases at rates projected by the Intergovernmental Panel on Climate Change, a group charged by the United Nations to study future climate variation. Her model looked at the effect the changing climate would have on the concentrations of two pollutants: black carbon particles -- essentially soot -- and carbon monoxide, which could also indicate ozone levels. When the model first indicated that future climate change would lead to higher pollution in the Northeast and Midwest, Mickley and her colleagues were a bit surprised.

"The answer lies in one of the basic forces that drive the Earth’s weather: the temperature difference between the hot equator and the cold poles," Mickley says.

Between those extremes, the atmosphere acts as a heat distribution system, moving warmth from the equator toward the poles. Over mid-latitudes, low-pressure systems and accompanying cold fronts are one way for heat to be redistributed. These systems carry warm air poleward ahead of fronts and draw down cooler air behind fronts.

In the future, that process could slow down. As the globe warms, the poles are expected to warm more quickly than the equator, decreasing the temperature difference between the poles and the equator. The atmosphere would then have less heat to redistribute and would generate fewer low-pressure systems.

With fewer cold fronts sweeping south to break up hot stagnant air over cities, the air would sit in place, gathering pollutants. Mickley’s model shows the length of these pollution episodes would increase significantly, even doubling in some locations.

Mickley’s collaborators include Daniel J. Jacob and B. D. Field at Harvard and D. Rind of the Goddard Institute for Space Studies.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>