Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming world could worsen pollution in Northeast, Midwest

21.02.2005


Harvard researcher to report at AAAS meeting on projected decline in cleansing summer winds



While science’s conventional wisdom holds that pollution feeds global warming, new research suggests that the reverse could also occur: A warming globe could stifle summer’s cleansing winds over the Northeast and Midwest over the next 50 years, significantly worsening air pollution in these regions.

Loretta J. Mickley, a research associate at Harvard University’s Division of Engineering and Applied Sciences, will report on these findings Saturday, Feb. 19, at the annual meeting of the American Association for the Advancement of Science in Washington, D.C. Her work is based on modeling of the impact of increasing greenhouse gas concentrations on pollution events across the United States through 2050.


Using this model, Mickley and colleagues found that the frequency of cold fronts bringing cool, clear air out of Canada during summer months declined about 20 percent. These cold fronts, Mickley said, are responsible for breaking up hot, stagnant air that builds up regularly in summer, generating high levels of ground-level ozone pollution. "The air just cooks," Mickley says. "The pollution accumulates, accumulates, accumulates, until a cold front comes in and the winds sweep it away."

Ozone is beneficial when found high in the atmosphere because it absorbs cancer-causing ultraviolet radiation. Near the ground, however, high concentrations are considered a pollutant, irritating sensitive tissues, particularly lung tissues.

"If this model is correct, global warming would cause an increase in difficult days for those affected by ozone pollution, such as people suffering with respiratory illnesses like asthma and those doing physical labor or exercising outdoors," Mickley says.

Mickley and her colleagues used a complex computer model developed by the Goddard Institute for Space Studies in New York, with further changes devised by her team at Harvard. It takes known elements such as the sun’s luminosity, the earth’s topography, the distribution of the oceans, the pull of gravity and the tilt of the earth’s axis, and figures in variables provided by researchers.

Mickley gradually increased levels of greenhouse gases at rates projected by the Intergovernmental Panel on Climate Change, a group charged by the United Nations to study future climate variation. Her model looked at the effect the changing climate would have on the concentrations of two pollutants: black carbon particles -- essentially soot -- and carbon monoxide, which could also indicate ozone levels. When the model first indicated that future climate change would lead to higher pollution in the Northeast and Midwest, Mickley and her colleagues were a bit surprised.

"The answer lies in one of the basic forces that drive the Earth’s weather: the temperature difference between the hot equator and the cold poles," Mickley says.

Between those extremes, the atmosphere acts as a heat distribution system, moving warmth from the equator toward the poles. Over mid-latitudes, low-pressure systems and accompanying cold fronts are one way for heat to be redistributed. These systems carry warm air poleward ahead of fronts and draw down cooler air behind fronts.

In the future, that process could slow down. As the globe warms, the poles are expected to warm more quickly than the equator, decreasing the temperature difference between the poles and the equator. The atmosphere would then have less heat to redistribute and would generate fewer low-pressure systems.

With fewer cold fronts sweeping south to break up hot stagnant air over cities, the air would sit in place, gathering pollutants. Mickley’s model shows the length of these pollution episodes would increase significantly, even doubling in some locations.

Mickley’s collaborators include Daniel J. Jacob and B. D. Field at Harvard and D. Rind of the Goddard Institute for Space Studies.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>