Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melting ice important indicator of global warming

21.02.2005


Surrounded by winter snow and ice, melting seems like a good thing, but, on a global scale, the melting of ice sheets and glaciers is a sign of global warming, according to a Penn State glaciologist.



"The really big picture shows change in the ice and those changes look like what we get is a world that is a little warmer," says Dr. Richard B. Alley, the Evan Pugh Professor of Geosciences. "We currently do not include all these processes in the models that predict the global future."

Summarizing published literature, Alley notes that spring snows in the Arctic have decreased without a decrease in overall precipitation. A shift in the snowy season is an indication of warming. As seen by satellites, Arctic sea ice is smaller and sea ice thickness measured by submarines is thinner.


"For the time period with especially good records, northern sea ice clearly shows a downward trend," says the Penn State researcher. "There may also be a downward trend in the south."

One explanation for the changes in the Arctic sea ice is a change in the circulation of the oceans and atmosphere. But the circulation change, which itself may be brought on by warming, does not seem to fully explain the changes in sea ice. Atmospheric warming may simply be causing melting.

"Mountain glaciers are typically more sensitive to temperature than other controls," says Alley. "Most mountain glaciers are getting smaller. Some are disappearing, others just shrinking."

Recent reports indicate that the large ice sheets in Antarctica and on Greenland are growing fatter in the middle due to slightly increased snow. Increased snow may be a sign of warming because warmer air holds more moisture for precipitation. In a few places on the margins of the ice, the ice sheets are getting smaller. The water from the shrinking ice sheets slightly raises ocean levels. "Both of these changes look like some sort of response to environmental warming," says Alley.

For floating ice, warm water beneath the ice sheet and warm air both may contribute to melting. But the real problem is that changes in the ice sheets are complicated, it is not simply melting. The centers of the ice sheets change on a scale of tens of thousands of years, while the edges change in years.

"We have been modeling ice sheets using ice flow models based on local information at the center of the ice sheets," says Alley. "But the ice sheets act globally as well."

The Penn State researcher explains that the models assume that if you push on one side of the ice sheet, the far side does not move. No transfer of energy takes place through the sheet. However, this approach does not work on a floating section of the ice sheet, the ice shelves. If you push on one side, the entire sheet moves.

"We have found that if the ice shelf calved off or a section melted, that the actual ice flow movement was much faster than our current models suggest," says Alley.

Obviously, some physical processes are not in the current models and these are important to the overall picture of the ice. Even little ice shelves can be important.

"However, if we include everything, everywhere, it will take a great deal of computer power and we are not quite ready for that yet," says the Penn State researcher.

What is clear is that ice around the globe is changing and the models are not adequate to fully understand what this means for the future.

"The ice changes are best explained by warming. Now we have to decide how to make better models and how to deal with the effects of warming," says Alley.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>