Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melting ice important indicator of global warming

21.02.2005


Surrounded by winter snow and ice, melting seems like a good thing, but, on a global scale, the melting of ice sheets and glaciers is a sign of global warming, according to a Penn State glaciologist.



"The really big picture shows change in the ice and those changes look like what we get is a world that is a little warmer," says Dr. Richard B. Alley, the Evan Pugh Professor of Geosciences. "We currently do not include all these processes in the models that predict the global future."

Summarizing published literature, Alley notes that spring snows in the Arctic have decreased without a decrease in overall precipitation. A shift in the snowy season is an indication of warming. As seen by satellites, Arctic sea ice is smaller and sea ice thickness measured by submarines is thinner.


"For the time period with especially good records, northern sea ice clearly shows a downward trend," says the Penn State researcher. "There may also be a downward trend in the south."

One explanation for the changes in the Arctic sea ice is a change in the circulation of the oceans and atmosphere. But the circulation change, which itself may be brought on by warming, does not seem to fully explain the changes in sea ice. Atmospheric warming may simply be causing melting.

"Mountain glaciers are typically more sensitive to temperature than other controls," says Alley. "Most mountain glaciers are getting smaller. Some are disappearing, others just shrinking."

Recent reports indicate that the large ice sheets in Antarctica and on Greenland are growing fatter in the middle due to slightly increased snow. Increased snow may be a sign of warming because warmer air holds more moisture for precipitation. In a few places on the margins of the ice, the ice sheets are getting smaller. The water from the shrinking ice sheets slightly raises ocean levels. "Both of these changes look like some sort of response to environmental warming," says Alley.

For floating ice, warm water beneath the ice sheet and warm air both may contribute to melting. But the real problem is that changes in the ice sheets are complicated, it is not simply melting. The centers of the ice sheets change on a scale of tens of thousands of years, while the edges change in years.

"We have been modeling ice sheets using ice flow models based on local information at the center of the ice sheets," says Alley. "But the ice sheets act globally as well."

The Penn State researcher explains that the models assume that if you push on one side of the ice sheet, the far side does not move. No transfer of energy takes place through the sheet. However, this approach does not work on a floating section of the ice sheet, the ice shelves. If you push on one side, the entire sheet moves.

"We have found that if the ice shelf calved off or a section melted, that the actual ice flow movement was much faster than our current models suggest," says Alley.

Obviously, some physical processes are not in the current models and these are important to the overall picture of the ice. Even little ice shelves can be important.

"However, if we include everything, everywhere, it will take a great deal of computer power and we are not quite ready for that yet," says the Penn State researcher.

What is clear is that ice around the globe is changing and the models are not adequate to fully understand what this means for the future.

"The ice changes are best explained by warming. Now we have to decide how to make better models and how to deal with the effects of warming," says Alley.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>