Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First critical parts of giant neutrino telescope in place

16.02.2005


Working under harsh Antarctic conditions, an international team of scientists, engineers and technicians has set in place the first critical elements of a massive neutrino telescope at the South Pole.



The successful deployment - in a 1.5 mile-deep hole drilled into the Antarctic ice - of a string of 60 optical detectors designed to sample phantom-like high-energy particles from deep space represents a key first step in the construction of the $272 million telescope known as IceCube.

The telescope and its construction are being financed by the National Science Foundation (NSF), which will provide $242 million. An additional $30 million in support will come from foreign partners. "It’s all on track," according to Francis Halzen, a University of Wisconsin-Madison professor of physics and the principal investigator for the project. "This was our first exam. We met our milestones for the season and we can move on to the next Antarctic summer."


In an announcement today (Feb. 15), scientists and managers of the project declared a successful first season of construction of what will become the world’s largest scientific instrument. Building the telescope requires drilling at least 70 one-and-one-half-mile-deep holes in the Antarctic ice using a novel hot-water drill, and then lowering long strings of volleyball-sized optical detectors - 4,200 in all - into the holes, where they will be frozen in place.

The first string, with 60 detectors, was successfully lowered into the ice in late January, and communication with the detectors, each of which is like a small computer, has been successfully established.

When completed, the telescope will utilize a cubic kilometer of Antarctic ice as a detector, and will be capable of capturing information-laden, high-energy particles from some of the most distant and violent events in the universe. It promises a new window to the heavens, and it may be astronomy’s best bet to resolve the century-old quest to identify the sources of cosmic rays.

The IceCube telescope will look for the telltale signatures of high-energy cosmic neutrinos, ghostlike particles produced in violent cosmic events - colliding galaxies, distant black holes, quasars and other phenomena occurring at the very margins of the universe. Cosmic rays, which are composed of protons, are thought to be generated by these same events. But protons are bent by the magnetic fields of interstellar space, preventing scientists from following them back to their points of origin.

Cosmic neutrinos, on the other hand, have the unique ability to travel cosmological distances without being absorbed or deflected by the stars, galaxies and interstellar magnetic fields that permeate space. Their ability to skip through matter without missing a beat promises unedited information about the early universe and the very violent objects that populate deep space.

But that same phantom-like property - the ability to travel billions of light years and pass unhindered through planets, stars and galaxies - makes detecting cosmic neutrinos extraordinarily difficult. "Neutrinos travel like bullets through a rainstorm," Halzen explains. "Immense instruments are required to find neutrinos in sufficient numbers to trace their origin."

The optical modules that make up the detector act like light bulbs in reverse. They are able to sense the fleeting flash of light created when neutrinos passing through the Earth from the Northern Hemisphere occasionally collide with other atoms. The subatomic wreck creates another particle called a muon. The muon leaves a trail of blue light in its wake that allows scientists to trace its direction, back to a point of origin, potentially identifying the cosmic accelerators - black holes or crashing galaxies, for example - that produce the high-energy neutrinos.

The telescope now under construction at the South Pole is an international effort involving more than 20 institutions. The project is funded by the U.S. National Science Foundation, with significant contributions from Germany, Sweden, Belgium, Japan, New Zealand, the Netherlands and the Wisconsin Alumni Research Foundation. In the U.S., the project involves scientists from UW-Madison, the University of California at Berkeley, the Lawrence Berkeley National Laboratory, the University of Maryland, Penn State University, the University of Wisconsin-River Falls, the University of Delaware, the University of Kansas, Clark Atlanta University, Southern University and A&M College, and the Institute for Advanced Study.

This year marks the first year of work on the IceCube telescope, which is being built around a much smaller neutrino telescope known as AMANDA, for Antarctic Muon and Neutrino Detector Array. "We’ve had an extremely productive year," says Jim Yeck, the IceCube project director. Accomplishments include fabrication of telescope instrumentation at collaborating institutions; the shipment of almost 1 million pounds of cargo to the South Pole; assembly and successful operation of the custom-built hot water drill; installation of facilities and instrumentation on the ice, including surface tanks with optical detectors (IceTop); and setting the first IceCube string into the ice. The first IceCube strings included optical detectors produced in Madison, Berlin and Stockholm. Data from the strings and the surface tanks is now being successfully transmitted to the Northern Hemisphere.

The hot-water drill system alone was transported to the South Pole from McMurdo Station on the Antarctic coast in 30 separate C-130 flights. "We met all of the high-level milestones, including the most significant one, the installation of a string," Yeck says. Establishing the project at the South Pole, setting surface equipment in place and testing the powerful new drill meant the team had only a two-week window to drill the first hole and deploy the first IceCube string. Next year, with half of the three-month Austral season, the goal will be to drill holes for and deploy ten or more strings.

Although significant progress was made this year, there were setbacks, including an accident that injured a driller. The injured driller was evacuated from the Pole to a hospital in New Zealand and has since recovered. "The safety of personnel living and working at the South Pole is an extremely high priority, in particular given the environment and harsh working conditions," Yeck says. "We responded to the accident very quickly by stopping drilling and placing equipment in standby mode until the appropriate safety reviews could be completed and the factors contributing to it could be addressed."

Yeck added that undertakings like the IceCube neutrino observatory and other polar science projects by U.S. researchers would not be possible without the strong logistics and science support provided by Raytheon Polar Services Co., the agency’s prime support contractor in Antarctica, and without the strong support of the New York Air National Guard for air cargo and personnel delivery, and the U.S. Coast Guard for keeping sea lanes to the U.S. Antarctic coastal bases open.

Halzen expressed confidence the project would remain on track: "If we stay on schedule, IceCube could take over next year as the world’s largest neutrino telescope."

Francis Halzen | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>