Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Findings by Scripps Scientists Cast New Light on Undersea Volcanoes


Study in Science may help change the broad understanding of how they are formed

Hawaii-Emperor chain, the conventional theory holds.

A map of Beru Atoll, part of the Gilbert Ridge seamount chain in the Pacific Ocean

Researchers at Scripps Institution of Oceanography at the University of California, San Diego, have produced new findings that may help alter commonly held beliefs about how chains of undersea mountains formed by volcanoes, or "seamounts," are created. Such mountains can rise thousands of feet off the ocean floor in chains that span thousands of miles across the ocean.

Since the mid-20th century, the belief that the earth’s surface is covered by large, shifting plates--a concept known as plate tectonics--has shaped conventional thinking on how seamount chains develop. Textbooks have taught students that seamount patterns are shaped by changes in the direction and motion of the plates. As a plate moves, stationary "hot spots" below the plate produce magma that forms a series of volcanoes in the direction of the plate motion.

Now, Anthony Koppers and Hubert Staudigel of Scripps have published a study that counters the idea that hot spots exist in fixed positions. The paper in the Feb. 11 issue of Science shows that hot spot chains can change direction as a result of processes unrelated to plate motion. The new research adds further to current scientific debates on hot spots and provides information for a better understanding of the dynamics of the earth’s interior.

To investigate this phenomenon, Staudigel led a research cruise in 1999 aboard the Scripps research vessel Melville to the Pacific Ocean’s Gilbert Ridge and Tokelau Seamounts near the international date line, a few hundred miles north of American Samoa and just south of the Marshall Islands.

Gilbert and Tokelau are the only seamount trails in the Pacific that bend in sharp, 60-degree angles--comparable in appearance to hockey sticks--similar to the bending pattern of the Hawaii-Emperor seamount chain (which includes the Hawaiian Islands).

Assuming that these three chains were created by fixed hot spots, the bends in the Gilbert Ridge and Tokelau Seamounts should have been created at roughly the same time period as the bend in the Hawaii-Emperor chain, the conventional theory holds.

Koppers, Staudigel and a team of student researchers aboard Melville spent six weeks exploring the ocean floor at Gilbert and Tokelau. They used deep-sea dredges to collect volcanic rock samples from the area.

For the next several years, Koppers used laboratory instruments to analyze the composition of the rock samples and calculate their ages. "It was quite a surprise that we found the Gilbert and Tokelau seamount bends to have completely different ages than we expected," said Koppers, a researcher at the Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics at Scripps. "We certainly didn’t expect that they were 10 and 20 million years older than previously thought."

Instead of forming 47 million years ago, as did the Hawaiian-Emperor bend, the Gilbert chain was found to be 67 million years old and the Tokelau 57 million years old. "I think this really hammers it in that the origin of the alignment of these seamount chains may be much more complicated than we previously believed, or the alignment may not have anything to do with plate motion changes," said Staudigel.

Although they do not have positive proof as yet, Koppers and Staudigel speculate that local stretching of the plate may allow magma to rise to the surface or that hot spots themselves might move. Together with plate motion, these alternate processes may be responsible for the resulting pattern of seamounts.

Koppers and Staudigel will go to sea again next year to seek additional clues to the hot spot and seamount mysteries. "Seamount trails are thousands of kilometers long and even if we are out collecting for several weeks, we still only cover a limited area," said Koppers. "One of the things holding us back in developing a new theory is that the oceans are humongous and our database is currently very small we are trying to understand a very big concept."

The study was funded by the National Science Foundation.

Scripps Institution of Oceanography, at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. The scientific scope of the institution has grown since its founding in 1903 to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $140 million from federal, state, and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Mario Aguilera | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>