Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollution can convert airborne iron into soluble form required for phytoplankton growth

11.02.2005


A surprising link may exist between ocean fertility and air pollution over land, according to Georgia Institute of Technology research reported in the Feb. 16 issue of the Journal of Geophysical Research — Atmospheres. The work provides new insight into the role that ocean fertility plays in the complex cycle involving carbon dioxide and other greenhouse gases in global warming.


NASA’s Terra satellite observed a large dust storm (light brown pixels) blowing over northeastern China toward the Korean peninsula in November 2002. The dust appears to be originating from the Gobi Desert in north central China. Toward the south (bottom center), there is a dense pall of haze and pollution (gray pixels) over much of southeastern China. Image Courtesy of NASA



When dust storms pass over industrialized areas, they can pick up sulfur dioxide, an acidic trace gas emitted from industrial facilities and power plants. As the dust storms move out over the ocean, the sulfur dioxide they carry lowers the pH (a measure of acidity and alkalinity) level of dust and transforms iron into a soluble form, said Nicholas Meskhidze, a postdoctoral fellow in Professor Athanasios Nenes’ group at Georgia Tech’s School of Earth and Atmospheric Sciences and lead author of the paper "Dust and Pollution: A Recipe for Enhanced Ocean Fertilization."

This conversion is important because dissolved iron is a necessary micronutrient for phytoplankton — tiny aquatic plants that serve as food for fish and other marine organisms, and also reduce carbon dioxide levels in Earth’s atmosphere via photosynthesis. Phytoplankton carry out almost half of Earth’s photosynthesis even though they represent less than 1 percent of the planet’s biomass.


In research funded by the National Science Foundation, Meskhidze began studying dust storms three years ago under the guidance of William Chameides, Regents’ Professor and Smithgall Chair at Georgia Tech’s School of Earth and Atmospheric Sciences and co-author of the paper. "I knew that large storms from the Gobi deserts in northern China and Mongolia could carry iron from the soil to remote regions of the northern Pacific Ocean, facilitating photosynthesis and carbon-dioxide uptake," Meskhidze said. "But I was puzzled because the iron in desert dust is primarily hematite, a mineral that is insoluble in high-pH solutions such as seawater. So it’s not readily available to the plankton."

Using data obtained in a flight over the study area, Meskhidze analyzed the chemistry of a dust storm that originated in the Gobi desert and passed over Shanghai before moving onto the northern Pacific Ocean. His discovery: When a high-concentration of sulfur dioxide mixed with the desert dust, it acidified the dust to a pH below 2 — the level needed for mineral iron to convert into a dissolved form that would be available to phytoplankton.

Expanding on this discovery, Meskhidze studied how variations in air pollution and mineral dust affect iron mobilization. Obtaining in-flight data from two different Gobi-desert storms — one occurring on March 12, 2001, and the other on April 6, 2001 -- Meskhidze analyzed the pollution content and then modeled the storms’ trajectory and chemical transformation over the North Pacific Ocean. Using satellite measurements, he determined whether there had been increased growth of phytoplankton in the ocean area where the storms passed.

The results were surprising, he said. Although the April storm was a large one, with three sources of dust colliding and traveling as far as the continental United States, there was no increased phytoplankton activity. Yet the March storm, albeit smaller, significantly boosted the production of phytoplankton.

The differing results can be attributed to the concentration of sulfur dioxide existing in dust storms, Meskhidze said. Large storms are highly alkaline because they contain a higher proportion of calcium carbonate. Thus, the amount of sulfur dioxide picked up from pollution is not enough to bring down the pH below 2.

"Although large storms can export vast amounts of mineral dust to the open ocean, the amount of sulfur dioxide required to acidify these large plumes and generate bioavailable iron is about five to 10 times higher than the average springtime concentrations of this pollutant found in industrialized areas of China," Meskhidze explained. "Yet the percentage of soluble iron in small dust storms can be many orders of magnitude higher than large dust storms."

So even though small storms are limited in the amount of dust they transport to the ocean and may not cause large plankton blooms, small storms still produce enough soluble iron to consistently feed phytoplankton and fertilize the ocean. This may be especially important for high-nitrate, low-chlorophyll waters, where phytoplankton production is limited because of a lack of iron.

Natural sources of sulfur dioxide, such as volcanic emissions and ocean production, may also cause iron mobilization and stimulate phytoplankton growth. Yet emissions from human-made sources normally represent a larger portion of the trace gas. Also, human-made emission sites may be closer to the storm’s course and have a stronger influence on it than natural sulfur dioxide, Meskhidze said. This research deepens scientists’ understanding of the carbon cycle and climate change, he added.

"It appears that the recipe of adding pollution to mineral dust from East Asia may actually enhance ocean productivity and, in so doing, draw down atmospheric carbon dioxide and reduce global warming," Chameides said.

"Thus, China’s current plans to reduce sulfur dioxide emissions, which will have far-reaching benefits for the environment and health of the people of China, may have the unintended consequence of exacerbating global warming," he added. "This is perhaps one more reason why we all need to get serious about reducing our emissions of carbon dioxide and other greenhouse gases."

Jane Sanders | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>