Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New surprising results about the research on glaciers

10.02.2005


In order to understand the dynamics of glaciers and ice sheets as well as their interactions with climate, we need fundamental detailed knowledge about the way in which glaciers and ice sheets move. The way water is routed through glaciers is highly significant for their movement since the water pressure at the base of the glacier directly influences its speed. The water pressure acts as a hydraulic jack and pushes that glacier forwards during high water pressure events. This may increase the velocity of the ice with a factor of two or even more.



Therefore, to understand how the speed of a glacier varies both in the long and the short term, it is important to have firm understanding of how water from rain and melting on the glacier’s surface reaches the glacier bed. Stockholm University runs a research station in Tarfala valley in the Kebnekaise mountains of northern Sweden.

Here on the 3 km2 glacier Storglaciären, a joint American-Swedish research team has investigated how water is transported within the glacier to better understand old established theories on water flow in glaciers. By drilling 48 vertical holes totaling 3.9 km into the glacier, mapping these with submersible video cameras and by imaging traces of cracks in the glacier by ground-penetrating radar surveys on the glacier surface, the team has established a detailed picture of how water circulates through the glacier.


The results are surprising since the old expectations that water should move in tubular conduits and that crevasses can not occur at great depths in the glacier are proven wrong. The new results show that the glacier is full of open cracks even at great depth and that these are interconnected to form an intricate system for water transport through Storglaciären which has an average thickness of 93 m with a maximum value of 250 m. The tubular conduits which have been predicted in earlier theories seem only to form in special cases. These new results will be of importance for our future knowledge on how dynamic processes act, not only in small glaciers but also for larger ice sheets such as the Greenland Ice Sheet.

Agneta Paulsson | alfa
Further information:
http://www.eks.su.se

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>