Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New surprising results about the research on glaciers


In order to understand the dynamics of glaciers and ice sheets as well as their interactions with climate, we need fundamental detailed knowledge about the way in which glaciers and ice sheets move. The way water is routed through glaciers is highly significant for their movement since the water pressure at the base of the glacier directly influences its speed. The water pressure acts as a hydraulic jack and pushes that glacier forwards during high water pressure events. This may increase the velocity of the ice with a factor of two or even more.

Therefore, to understand how the speed of a glacier varies both in the long and the short term, it is important to have firm understanding of how water from rain and melting on the glacier’s surface reaches the glacier bed. Stockholm University runs a research station in Tarfala valley in the Kebnekaise mountains of northern Sweden.

Here on the 3 km2 glacier Storglaciären, a joint American-Swedish research team has investigated how water is transported within the glacier to better understand old established theories on water flow in glaciers. By drilling 48 vertical holes totaling 3.9 km into the glacier, mapping these with submersible video cameras and by imaging traces of cracks in the glacier by ground-penetrating radar surveys on the glacier surface, the team has established a detailed picture of how water circulates through the glacier.

The results are surprising since the old expectations that water should move in tubular conduits and that crevasses can not occur at great depths in the glacier are proven wrong. The new results show that the glacier is full of open cracks even at great depth and that these are interconnected to form an intricate system for water transport through Storglaciären which has an average thickness of 93 m with a maximum value of 250 m. The tubular conduits which have been predicted in earlier theories seem only to form in special cases. These new results will be of importance for our future knowledge on how dynamic processes act, not only in small glaciers but also for larger ice sheets such as the Greenland Ice Sheet.

Agneta Paulsson | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>