Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New surprising results about the research on glaciers

10.02.2005


In order to understand the dynamics of glaciers and ice sheets as well as their interactions with climate, we need fundamental detailed knowledge about the way in which glaciers and ice sheets move. The way water is routed through glaciers is highly significant for their movement since the water pressure at the base of the glacier directly influences its speed. The water pressure acts as a hydraulic jack and pushes that glacier forwards during high water pressure events. This may increase the velocity of the ice with a factor of two or even more.



Therefore, to understand how the speed of a glacier varies both in the long and the short term, it is important to have firm understanding of how water from rain and melting on the glacier’s surface reaches the glacier bed. Stockholm University runs a research station in Tarfala valley in the Kebnekaise mountains of northern Sweden.

Here on the 3 km2 glacier Storglaciären, a joint American-Swedish research team has investigated how water is transported within the glacier to better understand old established theories on water flow in glaciers. By drilling 48 vertical holes totaling 3.9 km into the glacier, mapping these with submersible video cameras and by imaging traces of cracks in the glacier by ground-penetrating radar surveys on the glacier surface, the team has established a detailed picture of how water circulates through the glacier.


The results are surprising since the old expectations that water should move in tubular conduits and that crevasses can not occur at great depths in the glacier are proven wrong. The new results show that the glacier is full of open cracks even at great depth and that these are interconnected to form an intricate system for water transport through Storglaciären which has an average thickness of 93 m with a maximum value of 250 m. The tubular conduits which have been predicted in earlier theories seem only to form in special cases. These new results will be of importance for our future knowledge on how dynamic processes act, not only in small glaciers but also for larger ice sheets such as the Greenland Ice Sheet.

Agneta Paulsson | alfa
Further information:
http://www.eks.su.se

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>