Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Family trees of ancient bacteria reveal evolutionary moves

09.02.2005


Evolution as driving force in Earth’s development


A hot spring at old faithful in Yellowstone National Park, Wyoming. A WUSTL scientist suggests that Cyanobacteria arose in freshwater environments rather than in the sea. Carrine Blank/WUSTL Photo


Streamers and pustular mats from Yellowstone National Park containing Cyanobacteria, important organisms in the evolution of more complex organisms. Carrine Blank/WUSTL Photo



A geomicrobiologist at Washington University in St. Louis has proposed that evolution is the primary driving force in the early Earth’s development rather than physical processes, such as plate tectonics.

Carrine Blank, Ph.D., Washington University assistant professor of geomicrobiology in the Department of Earth & Planetary Sciences in Arts & Sciences, studying Cyanobacteria - bacteria that use light, water, and carbon dioxide to produce oxygen and biomass - has concluded that these species got their start on Earth in freshwater systems on continents and gradually evolved to exist in brackish water environments, then higher salt ones, marine and hyper saline (salt crust) environments.


Cyanobacteria are organisms that gave rise to chloroplasts, the oxygen factory in plant cells. A half billion years ago Cyanobacteria predated more complex organisms like multi-cellular plants and functioned in a world where the oxygen level of the biosphere was much less than it is today. Over their very long life span, Cyanobacteria have evolved a system to survive a gradually increasing oxidizing environment, making them of interest to a broad range of researchers.

Blank is able to draw her hypothesis from family trees she is drawing of Cyanobacteria. Her observations are likely to incite debate among biologists and geologists studying one of Earth’s most controversial eras - approximately 2.1 billion years ago, when cyanobacteria first arose on the Earth. This was a time when the Earth’s atmosphere had an incredible, mysterious and inexplicable rise in oxygen, from extremely low levels to 10 percent of what it is today. There were three - some say four - global glaciations, and the fossil record reflects a major shift in the number of organisms metabolizing sulfur and a major shift in carbon cycling.

"The question is: Why?" said Blank.

"My contribution is the attempt to find evolutionary explanations for these major changes. There were lots of evolutionary movements in Cyanobacteria at this time, and the bacteria were making an impact on the Earth’s development. Geologists in the past have been relying on geological events for transitions that triggered change, but I’m arguing that a lot of these things could be evolutionary."

Blank presented her research at the 2004 annual meeting of the Geological Society of America, held, Nov. 7-10 in Denver.

Blank’s finding that Cyanobacteria emerged first in fresh water lakes or streams is counterintuitive.

"Most people have the assumption that Cyanobacteria came out of a marine environment - after all, they are still important to marine environments today, so they must always have been," Blank said. "When Cyanobacteria started to appear, there was no ozone shield, so UV light would have killed most things. They either had to have come up with ways to deal with the UV light - and there is evidence that they made UV-absorbing pigments - or find ways of growing under sediments to avoid the light."

To study the evolution of Cyanobacteria, Blank drew up a backbone tree using multiple genes from whole genome sequences. Additional species were added to the tree using ribosomal RNA genes. Morphological characters, for instance, the presence or absence of a sheath, unicellular or filamentous growth, the presence or absence of heterocysts — a thick-walled cell occurring at intervals — were coded and mapped on the tree. The distribution of traits was compared with those found in the fossil record.

Cyanobacteria emerging some two billion years ago were becoming complex microbes that had larger cell diameters than earlier groups - at least 2.5 microns. Blank’s tree shows that several morphological traits arose independently in multiple lines, among them a sheath structure, filamentous growth, the ability to fix nitrogen, thermophily (love of heat), motility and the use of sulfide as an electron donor.

"We will need lots of analyses of the micro-fossil record by serious paleobiologists to see how sound this hypothesis is," Blank said. "This time frame is one of the biggest puzzles for biologists and geologists alike. A huge amount of things are happening then in the geological record."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>