Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Family trees of ancient bacteria reveal evolutionary moves

09.02.2005


Evolution as driving force in Earth’s development


A hot spring at old faithful in Yellowstone National Park, Wyoming. A WUSTL scientist suggests that Cyanobacteria arose in freshwater environments rather than in the sea. Carrine Blank/WUSTL Photo


Streamers and pustular mats from Yellowstone National Park containing Cyanobacteria, important organisms in the evolution of more complex organisms. Carrine Blank/WUSTL Photo



A geomicrobiologist at Washington University in St. Louis has proposed that evolution is the primary driving force in the early Earth’s development rather than physical processes, such as plate tectonics.

Carrine Blank, Ph.D., Washington University assistant professor of geomicrobiology in the Department of Earth & Planetary Sciences in Arts & Sciences, studying Cyanobacteria - bacteria that use light, water, and carbon dioxide to produce oxygen and biomass - has concluded that these species got their start on Earth in freshwater systems on continents and gradually evolved to exist in brackish water environments, then higher salt ones, marine and hyper saline (salt crust) environments.


Cyanobacteria are organisms that gave rise to chloroplasts, the oxygen factory in plant cells. A half billion years ago Cyanobacteria predated more complex organisms like multi-cellular plants and functioned in a world where the oxygen level of the biosphere was much less than it is today. Over their very long life span, Cyanobacteria have evolved a system to survive a gradually increasing oxidizing environment, making them of interest to a broad range of researchers.

Blank is able to draw her hypothesis from family trees she is drawing of Cyanobacteria. Her observations are likely to incite debate among biologists and geologists studying one of Earth’s most controversial eras - approximately 2.1 billion years ago, when cyanobacteria first arose on the Earth. This was a time when the Earth’s atmosphere had an incredible, mysterious and inexplicable rise in oxygen, from extremely low levels to 10 percent of what it is today. There were three - some say four - global glaciations, and the fossil record reflects a major shift in the number of organisms metabolizing sulfur and a major shift in carbon cycling.

"The question is: Why?" said Blank.

"My contribution is the attempt to find evolutionary explanations for these major changes. There were lots of evolutionary movements in Cyanobacteria at this time, and the bacteria were making an impact on the Earth’s development. Geologists in the past have been relying on geological events for transitions that triggered change, but I’m arguing that a lot of these things could be evolutionary."

Blank presented her research at the 2004 annual meeting of the Geological Society of America, held, Nov. 7-10 in Denver.

Blank’s finding that Cyanobacteria emerged first in fresh water lakes or streams is counterintuitive.

"Most people have the assumption that Cyanobacteria came out of a marine environment - after all, they are still important to marine environments today, so they must always have been," Blank said. "When Cyanobacteria started to appear, there was no ozone shield, so UV light would have killed most things. They either had to have come up with ways to deal with the UV light - and there is evidence that they made UV-absorbing pigments - or find ways of growing under sediments to avoid the light."

To study the evolution of Cyanobacteria, Blank drew up a backbone tree using multiple genes from whole genome sequences. Additional species were added to the tree using ribosomal RNA genes. Morphological characters, for instance, the presence or absence of a sheath, unicellular or filamentous growth, the presence or absence of heterocysts — a thick-walled cell occurring at intervals — were coded and mapped on the tree. The distribution of traits was compared with those found in the fossil record.

Cyanobacteria emerging some two billion years ago were becoming complex microbes that had larger cell diameters than earlier groups - at least 2.5 microns. Blank’s tree shows that several morphological traits arose independently in multiple lines, among them a sheath structure, filamentous growth, the ability to fix nitrogen, thermophily (love of heat), motility and the use of sulfide as an electron donor.

"We will need lots of analyses of the micro-fossil record by serious paleobiologists to see how sound this hypothesis is," Blank said. "This time frame is one of the biggest puzzles for biologists and geologists alike. A huge amount of things are happening then in the geological record."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>