Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Family trees of ancient bacteria reveal evolutionary moves

09.02.2005


Evolution as driving force in Earth’s development


A hot spring at old faithful in Yellowstone National Park, Wyoming. A WUSTL scientist suggests that Cyanobacteria arose in freshwater environments rather than in the sea. Carrine Blank/WUSTL Photo


Streamers and pustular mats from Yellowstone National Park containing Cyanobacteria, important organisms in the evolution of more complex organisms. Carrine Blank/WUSTL Photo



A geomicrobiologist at Washington University in St. Louis has proposed that evolution is the primary driving force in the early Earth’s development rather than physical processes, such as plate tectonics.

Carrine Blank, Ph.D., Washington University assistant professor of geomicrobiology in the Department of Earth & Planetary Sciences in Arts & Sciences, studying Cyanobacteria - bacteria that use light, water, and carbon dioxide to produce oxygen and biomass - has concluded that these species got their start on Earth in freshwater systems on continents and gradually evolved to exist in brackish water environments, then higher salt ones, marine and hyper saline (salt crust) environments.


Cyanobacteria are organisms that gave rise to chloroplasts, the oxygen factory in plant cells. A half billion years ago Cyanobacteria predated more complex organisms like multi-cellular plants and functioned in a world where the oxygen level of the biosphere was much less than it is today. Over their very long life span, Cyanobacteria have evolved a system to survive a gradually increasing oxidizing environment, making them of interest to a broad range of researchers.

Blank is able to draw her hypothesis from family trees she is drawing of Cyanobacteria. Her observations are likely to incite debate among biologists and geologists studying one of Earth’s most controversial eras - approximately 2.1 billion years ago, when cyanobacteria first arose on the Earth. This was a time when the Earth’s atmosphere had an incredible, mysterious and inexplicable rise in oxygen, from extremely low levels to 10 percent of what it is today. There were three - some say four - global glaciations, and the fossil record reflects a major shift in the number of organisms metabolizing sulfur and a major shift in carbon cycling.

"The question is: Why?" said Blank.

"My contribution is the attempt to find evolutionary explanations for these major changes. There were lots of evolutionary movements in Cyanobacteria at this time, and the bacteria were making an impact on the Earth’s development. Geologists in the past have been relying on geological events for transitions that triggered change, but I’m arguing that a lot of these things could be evolutionary."

Blank presented her research at the 2004 annual meeting of the Geological Society of America, held, Nov. 7-10 in Denver.

Blank’s finding that Cyanobacteria emerged first in fresh water lakes or streams is counterintuitive.

"Most people have the assumption that Cyanobacteria came out of a marine environment - after all, they are still important to marine environments today, so they must always have been," Blank said. "When Cyanobacteria started to appear, there was no ozone shield, so UV light would have killed most things. They either had to have come up with ways to deal with the UV light - and there is evidence that they made UV-absorbing pigments - or find ways of growing under sediments to avoid the light."

To study the evolution of Cyanobacteria, Blank drew up a backbone tree using multiple genes from whole genome sequences. Additional species were added to the tree using ribosomal RNA genes. Morphological characters, for instance, the presence or absence of a sheath, unicellular or filamentous growth, the presence or absence of heterocysts — a thick-walled cell occurring at intervals — were coded and mapped on the tree. The distribution of traits was compared with those found in the fossil record.

Cyanobacteria emerging some two billion years ago were becoming complex microbes that had larger cell diameters than earlier groups - at least 2.5 microns. Blank’s tree shows that several morphological traits arose independently in multiple lines, among them a sheath structure, filamentous growth, the ability to fix nitrogen, thermophily (love of heat), motility and the use of sulfide as an electron donor.

"We will need lots of analyses of the micro-fossil record by serious paleobiologists to see how sound this hypothesis is," Blank said. "This time frame is one of the biggest puzzles for biologists and geologists alike. A huge amount of things are happening then in the geological record."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>