Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic network could improve disaster response

08.02.2005


While nothing can undo the devastation from the massive tsunami that recently struck in Southeast Asia, lives can be saved in the future if scientists can rapidly characterize the earthquakes that cause tsunami. The quick response of the Global Seismographic Network to the 26 December 2004 Sumatra- Andaman earthquake offers clear opportunities to reduce the amount of time before an emergency response and assistance could be dispatched to a similarly afflicted area in the future.



The 137-station network, funded by the U.S. National Science Foundation in partnership with the U.S. Geological Survey, is managed by the Incorporated Research Institutions for Seismology (IRIS) Consortium and operated by the USGS, the University of California, San Diego, and a number of domestic and international institutions to monitor earthquakes and other seismic activity worldwide. And, according to Jeffrey Park from Yale University and his colleagues, the recent subduction zone rupture that touched off the Asian tsunami was the first full-scale test of the system’s technical design goals, set more than 20 years ago. The success of the network will become increasingly apparent as more highly detailed information from the global array is produced and studied, Park writes in an article about the seismographic network and the Sumatran earthquake for the 8 February issue of Eos, Transactions of the American Geophysical Union.

The authors note that with the network now online, and with the planned addition of more seismograph locations into the system, strong seismic events in the future can be continuously monitored in unprecedented detail from the instant when the first signals arrive at monitoring stations. Such direct observations could allow scientists to quickly determine the magnitude of an event and its precise location in near real-time.


Seismic waves from the 9.0-magnitude Sumatra earthquake, for example, reached a monitoring station in Sri Lanka within four minutes and caused the needles on thousands of seismometers worldwide to dance within 21 minutes, but earlier knowledge of the northwest direction of its rupture would have allowed for a more confident warning to the Indonesian coastline that bore the brunt of the tidal wave. The scientists point out, however, that a communications and public warning system was not yet established to spread the word about the resulting tsunami.

"The terrible damage and loss of life wrought by this earthquake humbles the most dispassionate observer, as does the strong likelihood that one or more [similar] earthquakes will occur elsewhere in the coming century," Park writes in the article. "Technological advances have enabled real time data acquisition and rapid response capabilities that were not fully envisioned when the network was designed in 1984 and, while improved station coverage and telemetry would enhance the current system, its capabilities have not been exploited fully."

The authors propose that a standardized, continuous system to track seismic signals could allow researchers to compile and interpret information about potential hazards sooner. Also, in an indication how the network could combine with an ocean-pressure tsunami monitoring system, the authors point out that later analyses of seismographic network data shows that it was possible to model at least a portion of the ground slip from the first three minutes of the Asian earthquake’s seismic motion, which would have assisted in predicting the event and its subsequent aftershocks.

The researchers predict that because of its unparalleled detail, data from the Global Seismographic Network is expected to drive new scientific discoveries in the future, ranging from a better understanding of the preliminary conditions prior to a fault rupture, to honing tsunami and flood models. The authors indicate that such studies, in combination with other geodetic information, could be applied to seismically active regions worldwide, like the Cascadia subduction zone in the Pacific Northwest.

Jonathan Lifland | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>