Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using global warming to create conditions for life on Mars


Injecting synthetic "super" greenhouse gases into the Martian atmosphere could raise the planet’s temperature enough to melt its polar ice caps and create conditions suitable for sustaining biological life. In fact, a team of researchers suggests that introducing global warming on the Red Planet may be the best approach for warming the planet’s frozen landscape and turning it into a habitable world in the future.

Margarita Marinova, then at the NASA Ames Research Center, and colleagues propose that the same types of atmospheric interactions that have led to recent surface temperature warming trends on Earth could be harnessed on Mars to create another biologically hospitable environment in the solar system. In the February issue of Journal of Geophysical Research-Planets, published by the American Geophysical Union, the researchers report on the thermal energy absorption and the potential surface temperature effects from introducing man-made greenhouse gases strong enough to melt the carbon dioxide and ice on Mars.

"Bringing life to Mars and studying its growth would contribute to our understanding of evolution, and the ability of life to adapt and proliferate on other worlds," Marinova said. "Since warming Mars effectively reverts it to its past, more habitable state, this would give any possibly dormant life on Mars the chance to be revived and develop further."

The authors note that artificially created gases--which would be nearly 10,000 times more effective than carbon dioxide--could be manufactured to have minimal detrimental effects on living organisms and the ozone layer while retaining an exceptionally long lifespan in the environment. They then created a computer model of the Martian atmosphere and analyzed four such gases, individually and in combination, that are considered the best candidates for the job.

Their study focused on fluorine-based gases, composed of elements readily available on the Martian surface, that are known to be effective at absorbing thermal infrared energy. They found that a compound known as octafluoropropane, whose chemical formula is C3F8, produced the greatest warming, while its combination with several similar gases enhanced the warming even further.

The researchers anticipate that adding approximately 300 parts per million of the gas mixture in the current Martian atmosphere, which is the equivalent of nearly two parts per million in an Earth-like atmosphere, would spark a runaway greenhouse effect, creating an instability in the polar ice sheets that would slowly evaporate the frozen carbon dioxide on the planet’s surface. They add that the release of increasing amounts of carbon dioxide would lead to further melting and global temperature increases that could then enhance atmospheric pressure and eventually restore a thicker atmosphere to the planet.

Such a process could take centuries or even millennia to complete but, because the raw materials for the fluorine gases already exist on Mars, it is possible that astronauts could create them on a manned mission to the planet. It would otherwise be impossible to deliver gigaton-sized quantities of the gas to Mars. The authors conclude that introducing powerful greenhouse gases is the most feasible technique for raising the temperature and increasing the atmospheric pressure on Mars, particularly when compared to other alternatives like sprinkling sunlight-absorbing dust on the poles or placing large mirrors in the planet’s orbit.

Harvey Leifert | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>