Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite data reveal immense pollution pool over Bihar, India

31.01.2005


Scientists studying satellite data have discovered an immense wintertime pool of pollution over the northern Indian state of Bihar. Blanketing around 100 million people, primarily in the Ganges Valley, the pollution levels are about five times larger than those typically found over Los Angeles.



The discovery was made by researchers analyzing four years of data collected by the Multi-angle Imaging Spectro-Radiometer (MISR) onboard the Terra satellite. Lofted into orbit on Dec. 18, 1999, Terra is the flagship of NASA’s Earth Observing System Program.

"This study is the most comprehensive and detailed examination of industrial, smoke and other air pollution particles over the Indian subcontinent to date, and reveals how topography, meteorology and human activity help determine where these particles are concentrated," said Larry Di Girolamo, a professor of atmospheric sciences at the University of Illinois at Urbana-Champaign and a co-investigator on the MISR mission.


"MISR is the first instrument to make high-resolution, multi-angle radiometric measurements of Earth from space," Di Girolamo said. "By measuring reflected sunlight at nine angles, we can accurately determine the amount of particulate matter, including that generated from man-made pollution, in the atmosphere."

While high pollution levels were found over much of India, a concentrated pool of particles was discovered over Bihar, a largely rural area with a high population density. A large source contributing to the Bihar pollution pool is the inefficient burning of a variety of biofuels during cooking and other domestic use. Particles in the smoke remain close to the ground, trapped by valley walls, and unable to mix upward because of a high-pressure system that dominates the region during winter. "The result is a pollution episode that can affect both human health and local climate," Di Girolamo said. "The airborne particles can damage delicate lung tissue, and by altering the radiative heating profile of the atmosphere, the particles may change temperature and precipitation patterns."

Prior to the MISR study, atmospheric models had predicted a tongue of pollution extending across the middle of India. The MISR observations, however, show the pollution lies much farther north. "These models are very important to us, as they are used to forecast pollution episodes and climate change," Di Girolamo said. "The fact that model results don’t match the MISR observations suggests there are problems in the models or the model inputs that need to be fixed." The role of airborne particles remains one of the largest uncertainties in atmospheric modeling. In addition to modifying local climate, the particles can interact with clouds and change the cloud properties. This is particularly important, since clouds have the greatest radiative forcing on the climate system.

"The Bihar pollution pool must be having a tremendous impact on the local climate and the health of the approximately 100 million people that reside within this pool." Di Girolamo said. "Our long-term goal is to better predict the occurrence of these pollution episodes and their impact on public health and local climate."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>