Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic rivers discharge more freshwater into ocean, reflecting changes to hydrologic cycle

19.01.2005


Far northern rivers are discharging increasing amounts of freshwater into the Arctic Ocean, due to intensified precipitation caused by global warming, say researchers at the Hadley Centre for Climate Prediction and Research in the United Kingdom.



Water exchange between the ocean, atmosphere, and land is called the global hydrological cycle. As Earth’s climate warms, the rate of this exchange is expected to increase. As part of this process, high-latitude precipitation and, consequently, river runoffs are also expected to increase. This could change the distribution of water on Earth’s surface, with important social and economic consequences.

It could also alter the balance of the climate system itself, such as the Atlantic thermohaline circulation, a kind of conveyor belt. Cold water flows southward in the Atlantic at great depths to the tropics, where it warms, rises, and returns northward near the surface. This flow helps keep northern Europe at a temperate climate, whereas the same latitudes in North America are sparsely settled tundra or taiga.


Researchers Peili Wu, Richard Wood, and Peter Stott of the Hadley Centre compared observational data reported in Science in 2002 by Peterson and others with model simulations, produced by Hadley, part of the United Kingdom’s Met Office. Writing in the journal Geophysical Research Letters (21 January), they note that increased human-caused greenhouse gas emissions are expected to intensify the Arctic hydrologic cycle, that is, the cycle of water as it rains onto land and sea, runs off into rivers, and evaporates to continue the cycle. The increased Arctic precipitation is balanced by decreased precipitation in the tropics, they say.

Wu and his colleagues tested the model with four simulations that took into account both human inputs and natural factors, including solar variability and volcanic eruptions. The results showed a steady increase in Arctic river discharges, especially since the 1960s. The annual rate of increase since 1965 was 8.73 cubic kilometers [2.31 million gallons] per year, far greater than the long term trend.

Seeking to determine the source of the upward trend of recent decades, the researchers asked first whether it could be the early part of the predicted increase in the global hydrological cycle, caused by global warming. Their simulations excluded human impacts in one instance and natural impacts in another, and included all factors in a third. They concluded that had there been no human inputs, the hydrological cycle would have shown no trend at all in the 20th century.

Had there been only human inputs and no natural ones, Wu and colleagues say, the long term trend would be 50 percent higher than when all factors were considered. They conclude that over the past four decades, human activity played the major role in increased river flows into the Arctic. The observed data conform well to the predictions of the Hadley climate model, they say, regarding human inputs. They say it is likely that the upward trend in river flow changes is part of the early stages of an intensified hydrologic cycle.

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>