Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen’s discovery sheds new light on ancient temperatures

11.01.2005


A new discovery by a team of Queen’s University scientists suggests that ancient earth was much colder than previously thought – a discovery that has broad implications for those studying the earth’s climate.




Queen’s researchers have discovered the mineral ikaite in 700-million-year-old marine sedimentary rocks in the Mackenzie Mountains of the Northwest Territories and eastern Yukon. This discovery proves that the ancient ocean was much colder than previously believed, says Noel James of Queen’s department of Geological Sciences and Geological Engineering. It has caused scientists to rethink what they know about the temperatures of ancient earth and possible atmospheric conditions at the time.

“One of the main thrusts of our research is trying to unravel the ancient history of the planet,” says James. “If we understand what has happened in the past and how the earth has responded and recovered, it will give us some idea of how the world will respond to some of the things that are happening to it now.”


The researchers discovered ikaite at several different levels in what were believed to be rock formations deposited in shallow, warm oceans during the interval between two ice ages that extended all the way to the equator millions of years ago. But ikaite forms in shallow water on the sea bottom at cold temperatures and melts when brought to the surface. The fundamental question for scientists is what triggered the enormous ice ages that left the oceans cold enough for the formation of this mineral?

One controversial theory known as “The Snowball Earth” hypothesis suggests that around 700 million years ago the earth was almost totally enclosed in ice. The Queen’s discovery offers alternatives to this hypothesis. Glaciers wax and wane according to how the earth’s orbit changes relative to the sun and how much solar radiation reaches the earth over a given time, says James. Was there a major celestial change that allowed the oceans to become so much colder during this period, or was there a change in the composition of the atmosphere that no longer allowed solar radiation to heat the surface of the earth?

The Queen’s study suggests that an overpopulation of ancient marine plants may have removed carbon dioxide from the atmosphere and created extreme cold that caused the earth’s temperature to fall, and this would be reflected in the composition of the rock.

Queen’s earth scientists including Dr. James, Guy Narbonne, Robert Dalrymple and Kurt Kyser are using chemical analysis to determine the precise attributes of the rocks and further pursue the study of the ancient environment at this time in earth’s history. These measurements are being completed at the Queen’s Facility for Isotope Research, one of the best in North America.

The research is funded by NSERC Discovery and Major Facilities Access grants, Canada Foundation for Innovation and Ontario Innovation Trust.

For more information contact Lorinda Peterson, 613.533.3234, petersn@post.queensu.ca or Nancy Dorrance, 613.533.2869, dorrance@post.queensu.ca, Queen’s News and Media Services.

Lorinda Peterson | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>