Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen’s discovery sheds new light on ancient temperatures

11.01.2005


A new discovery by a team of Queen’s University scientists suggests that ancient earth was much colder than previously thought – a discovery that has broad implications for those studying the earth’s climate.




Queen’s researchers have discovered the mineral ikaite in 700-million-year-old marine sedimentary rocks in the Mackenzie Mountains of the Northwest Territories and eastern Yukon. This discovery proves that the ancient ocean was much colder than previously believed, says Noel James of Queen’s department of Geological Sciences and Geological Engineering. It has caused scientists to rethink what they know about the temperatures of ancient earth and possible atmospheric conditions at the time.

“One of the main thrusts of our research is trying to unravel the ancient history of the planet,” says James. “If we understand what has happened in the past and how the earth has responded and recovered, it will give us some idea of how the world will respond to some of the things that are happening to it now.”


The researchers discovered ikaite at several different levels in what were believed to be rock formations deposited in shallow, warm oceans during the interval between two ice ages that extended all the way to the equator millions of years ago. But ikaite forms in shallow water on the sea bottom at cold temperatures and melts when brought to the surface. The fundamental question for scientists is what triggered the enormous ice ages that left the oceans cold enough for the formation of this mineral?

One controversial theory known as “The Snowball Earth” hypothesis suggests that around 700 million years ago the earth was almost totally enclosed in ice. The Queen’s discovery offers alternatives to this hypothesis. Glaciers wax and wane according to how the earth’s orbit changes relative to the sun and how much solar radiation reaches the earth over a given time, says James. Was there a major celestial change that allowed the oceans to become so much colder during this period, or was there a change in the composition of the atmosphere that no longer allowed solar radiation to heat the surface of the earth?

The Queen’s study suggests that an overpopulation of ancient marine plants may have removed carbon dioxide from the atmosphere and created extreme cold that caused the earth’s temperature to fall, and this would be reflected in the composition of the rock.

Queen’s earth scientists including Dr. James, Guy Narbonne, Robert Dalrymple and Kurt Kyser are using chemical analysis to determine the precise attributes of the rocks and further pursue the study of the ancient environment at this time in earth’s history. These measurements are being completed at the Queen’s Facility for Isotope Research, one of the best in North America.

The research is funded by NSERC Discovery and Major Facilities Access grants, Canada Foundation for Innovation and Ontario Innovation Trust.

For more information contact Lorinda Peterson, 613.533.3234, petersn@post.queensu.ca or Nancy Dorrance, 613.533.2869, dorrance@post.queensu.ca, Queen’s News and Media Services.

Lorinda Peterson | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>