Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most changes in Earth’s shape are due to changes in climate

10.01.2005


Scientists using NASA satellite data found the shape of the Earth appears to be influenced by big climate events that cause changes in the mass of water stored in oceans, continents and atmosphere.

The study’s principal researchers are Minkang Cheng and Byron D. Tapley, of the Center for Space Research, University of Texas at Austin. They reviewed climate events like El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) that affect the amount of water moving in the oceans, atmosphere and continents.

The study shows significant variations in the shape of the Earth, defined by the Earth’s gravity field, or geoid, during the past 28 years might be partially linked to climate events. The study examined Earth’s oblateness, how much its rounded shape flattens at the poles and widens at the equator. Scientists measured the distance from ground stations to satellites by using Satellite Laser Ranging (SLR) data that are accurate within one millimeter.



The data reflected mass changes as water redistributed in oceans, atmosphere, and in soil. The redistribution resulted in slight changes of the Earth’s gravity field, detectable with geodetic satellites, those that study of the size and shape of the Earth.

The researchers found over the past 28 years, two large variations in the Earth’s oblateness were connected to strong ENSO events. Variations in mass distribution, which caused the change in the gravity field, were predominantly over the continents, with a smaller contribution due to changes over the ocean. The cause of a variation in the Earth’s mass over the 21-year period between 1978 and 2001, however, still remains a mystery.

The scientists also found that another change in mass distribution may have started in late 2002, which coincides with the moderate El Niño that developed at that time. "The main idea, however, is that the Earth’s large scale transport of mass is related to the long-term global climate changes," said Cheng. Cheng and Tapley’s research relied on NASA’s SLR data to measure changes in the longest wavelengths of the Earth’s gravity field in order to see how the global-scale mass was redistributed around the world.

The Earth’s gravity is an invisible force of attraction that pulls masses together. The relative motion of a small lighter object, such as a spacecraft, to a large heavy object such as the Earth, depends on how much mass each object has and how that mass is distributed. Scientists can measure the changes in Earth’s gravitational pull using instruments on the ground to track satellites in space. So, water mass shifts on Earth and the changes in shape of the Earth can be detected.

The long-term history of the SLR measurements make it possible for scientists to see the changes over time in melting glaciers and polar ice sheets and the associated sea level change. The SLR data have also been used to detect the motion of global tectonic plates on which landmasses rest, the deformation of the Earth’s crusts near plate boundaries, and the orientation and rate of spin of the Earth.

In March 2002, NASA and the German Aerospace Center launched the Gravity Recovery and Climate Experiment (GRACE) to sense small-scale variations in Earth’s gravitational pull from local changes in Earth’s mass. GRACE data will assist with future studies similar to Cheng and Tapley’s research. The GRACE satellite, together with 18 other NASA research satellites, have opened new windows to exploring Earth and to understanding the intricate processes that support life.

The study was published in a recent issue of the Journal of Geophysical Research-Solid Earth.

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>