Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most changes in Earth’s shape are due to changes in climate

10.01.2005


Scientists using NASA satellite data found the shape of the Earth appears to be influenced by big climate events that cause changes in the mass of water stored in oceans, continents and atmosphere.

The study’s principal researchers are Minkang Cheng and Byron D. Tapley, of the Center for Space Research, University of Texas at Austin. They reviewed climate events like El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) that affect the amount of water moving in the oceans, atmosphere and continents.

The study shows significant variations in the shape of the Earth, defined by the Earth’s gravity field, or geoid, during the past 28 years might be partially linked to climate events. The study examined Earth’s oblateness, how much its rounded shape flattens at the poles and widens at the equator. Scientists measured the distance from ground stations to satellites by using Satellite Laser Ranging (SLR) data that are accurate within one millimeter.



The data reflected mass changes as water redistributed in oceans, atmosphere, and in soil. The redistribution resulted in slight changes of the Earth’s gravity field, detectable with geodetic satellites, those that study of the size and shape of the Earth.

The researchers found over the past 28 years, two large variations in the Earth’s oblateness were connected to strong ENSO events. Variations in mass distribution, which caused the change in the gravity field, were predominantly over the continents, with a smaller contribution due to changes over the ocean. The cause of a variation in the Earth’s mass over the 21-year period between 1978 and 2001, however, still remains a mystery.

The scientists also found that another change in mass distribution may have started in late 2002, which coincides with the moderate El Niño that developed at that time. "The main idea, however, is that the Earth’s large scale transport of mass is related to the long-term global climate changes," said Cheng. Cheng and Tapley’s research relied on NASA’s SLR data to measure changes in the longest wavelengths of the Earth’s gravity field in order to see how the global-scale mass was redistributed around the world.

The Earth’s gravity is an invisible force of attraction that pulls masses together. The relative motion of a small lighter object, such as a spacecraft, to a large heavy object such as the Earth, depends on how much mass each object has and how that mass is distributed. Scientists can measure the changes in Earth’s gravitational pull using instruments on the ground to track satellites in space. So, water mass shifts on Earth and the changes in shape of the Earth can be detected.

The long-term history of the SLR measurements make it possible for scientists to see the changes over time in melting glaciers and polar ice sheets and the associated sea level change. The SLR data have also been used to detect the motion of global tectonic plates on which landmasses rest, the deformation of the Earth’s crusts near plate boundaries, and the orientation and rate of spin of the Earth.

In March 2002, NASA and the German Aerospace Center launched the Gravity Recovery and Climate Experiment (GRACE) to sense small-scale variations in Earth’s gravitational pull from local changes in Earth’s mass. GRACE data will assist with future studies similar to Cheng and Tapley’s research. The GRACE satellite, together with 18 other NASA research satellites, have opened new windows to exploring Earth and to understanding the intricate processes that support life.

The study was published in a recent issue of the Journal of Geophysical Research-Solid Earth.

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Sea level as a metronome of Earth's history
19.05.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>