Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologist comments on Oregon’s tsunami hazard

30.12.2004


Records show an equivalent event on the Oregon coast occurred in 1700

Earthquake-caused tsunamis as severe as those that swept southeast Asia on Sunday have happened in the past off the Oregon coast, according to a University of Oregon geoscientist.

In fact, a tsunami caused by a magnitude 9.0 earthquake occurred on Jan. 26, 1700, wiping out Oregon tribal villages in low-lying coastal estuaries and causing damage as far away as Japan. Ray Weldon, who researches and teaches about of geologic hazards, says he hopes coastal residents will be motivated to learn about Oregon’s tsunami potential in light of the devastation along the coasts of nine Asian nations on the Indian Ocean.



Weldon is leading a team of scientists studying uplift along the coast and how it informs the size of future earthquakes and tsunamis. He says a comparison of modern uplift rates in the Pacific Northwest to that predicted by models of past earthquakes--like that big one of 1700--reveals many similarities. "This tells us that the subduction zone is accumulating strain for the next great earthquake," he says. Historically, such events tend to occur, on the average, every 300 to 500 years.

Damage from an undersea earthquake as large as the one that shook the Indian Ocean could span from Northern California to Vancouver, B.C. Weldon and his colleagues estimate that the resulting tsunami would add to the damage in the low-lying coastal part of the Pacific Northwest and extend beyond the region to as far away as Japan.

Their data corresponds with written records in Japan and Native American legends about the 1700 quake, which are consistent with other geological evidence. "From northern California to Vancouver, B.C., the Native American stories tell of battles between gods along the coast, whales carried over the land and dropped, rivers becoming salty during the flood, and canoes thrown into trees," Weldon says.

These stories, related by survivors who lived on or escaped to higher ground, describe the destruction of villages in tidal estuaries. The geologic record now includes widespread evidence of submerged coastal estuaries, marine fossils and sand deposits carried by the tsunami far up coastal rivers, and drowned coastal forests. Radiocarbon dating and tree ring analysis established that most of these forests were drowned in the winter of 1699–1700.

Weldon, who has lived in Indonesia and has relatives in Thailand, says last weekend’s tragedy brings home the need for coastal residents and tourists to learn about and take precautions against tsunamis. "For an earthquake as strong as the one that hit southeast Asia, the shaking at the Oregon coast would last for up to 90 seconds and be great enough to cause significant damage and loss of life," he says. "Most significantly, a tsunami will arrive at the coast as soon as minutes following the shaking to within a half-hour."

If a major earthquake occurs off the coast it is crucial to move immediately to higher ground, preferably at least 100 feet above sea level. Weldon warns against becoming "lulled into complacency" by small initial waves or by the sight of the water withdrawing as this can rapidly reverse – a feature of the deceptive behavior of the ocean during subduction earthquakes.

To view maps of Oregon communities at risk for tsunamis, go to http://sarvis.dogami.state.or.us/earthquakes/Coastal/Tsumaps.HTM. Links to more information about Oregon’s tsunami warning system, mitigation efforts and details about historic earthquakes in the Pacific Northwest are available at the website for the Oregon Department of Geology and Mineral Industries, http://www.oregongeology.com/earthquakes/Coastal/TsunamiIntro.htm.

Melody Ward Leslie | EurekAlert!
Further information:
http://www.uoregon.edu
http://www.oregongeology.com

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>