Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catastrophic Flooding from Ancient Lake May Have Triggered Cold Period

20.12.2004


Imagine a lake three times the size of the present-day Lake Ontario breaking through a dam and flooding down the Hudson River Valley past New York City and into the North Atlantic. The results would be catastrophic if it happened today, but it did happen some 13,400 years ago during the retreat of glaciers over North America and may have triggered a brief cooling known as the Intra-Allerod Cold Period.



Assistant Scientist Jeffrey Donnelly of the Woods Hole Oceanographic Institution presented the findings at the American Geophysical Union’s fall meeting in San Francisco today. Donnelly and colleagues analyzed data from sediment cores, walrus fossils and pollen to precisely date the discharge from Glacial Lake Iroquois down the Hudson River Valley at 13,350 years ago. The flood waters broke through a spot of land where the Verazanno Narrows Bridge now stands to reach the North Atlantic.

The discharge of glacial freshwater into the North Atlantic has long been thought to drive fluctuations in past climate because the huge volume of freshwater would alter thermohaline circulation in the ocean. Directly linking discharge events with individual climatic changes has been difficult because of the challenges in pinpointing the location, timing and amount of the discharge.


The Intra-Allerod Cold Period lasted only about 150 years and occurred just before the Younger Dryas, a sudden cold climate period lasting some 1,200 years and ending about 11,000 years ago. Many scientists believe the Younger Dryas was caused by the shutdown of the Gulf Stream in response to a sudden influx of fresh water from deglaciation in North America. Global climate would then have become locked into the new state until freezing removed the fresh water "lid" from the North Atlantic Ocean.

The team compared their evidence for the massive flood down the Hudson Valley with data from sediment cores taken from the Cariaco Basin off Venezuela in the Caribbean, which show a slowing of thermohaline circulation and heat transport into the North Atlantic at that same time.

Donnelly and his colleagues were able to determine the timing of this event by analyzing data from sediment cores from the Hudson River Valley and the continental shelf. Sediment samples collected near the Tappan Zee Bridge indicate that ocean water flooded the lower Hudson Valley just after the flood event occurred. Pollen data from the first marine sediments deposited near the Holland Tunnel correlate with those from radiocarbon-dated sediments from nearby Sutherland Pond in New York and provide further constraint on the timing of the flood. Walrus remains recovered from gigantic sediment lobes deposited offshore during the flood were carbon dated to further pinpoint a precise time period.

Large rocks the size of Volkswagens, also associated with these sediment lobes, have been photographed on the outer continental shelf off the mouth of the Hudson River, where sediments normally are the size of grains of sand or smaller. Donnelly says the large rocks most likely came from the melting glacier and were carried down to the Atlantic in the floodwaters.

Glacial Lake Iroquois, in the same location and about three times the size as modern day Lake Ontario, was formed as the Laurentide Ice Sheet receded from its maximum extent along southern Long Island, New York, and northern New Jersey to southern Canada from about 21,000 to 13,000 years ago. Several other glacial lakes, Glacial Lake Albany and Glacial Lake Vermont, existed for several thousand years and deposited thick layers of silt and clay in the Hudson River Valley and Champlain Lowlands.

Donnelly says a dam north of the Adirondack Mountains in upstate New York holding back the ancient lake collapsed, allowing lake water to drain into the Hudson River Valley and the North Atlantic, dropping the level of Glacial Lake Iroquois some 120 meters (about 400 feet). Following the collapse of Glacial Lake Iroquois, another lake, Glacial Lake Candona, formed in the Ontario, Saint Lawrence and Champlain Lowlands, controlled in level by a sill or rock dam near Fort Ann, Vermont.

Lake Candona existed only about 100 to 200 years before it drained to the Atlantic when the ice sheet blocking the St. Lawrence Valley collapsed. Following the drainage of Lake Candona, seawater invaded the St. Lawrence and Champlain Lowlands and formed the Laurentian Seaway and the Champlain Sea. Glacial Lake Candona dropped about 40 meters (125 feet) as it drained into the North Atlantic via the Saint Lawrence River Valley. This opening of the St. Lawrence Valley as a conduit for glacial meltwater about 13,000 years ago likely played a role in causing the onset of the Younger Dryas cold interval.

The team will publish the results of the complete study in the February 2005 issue of the journal Geology. Donnelly’s research was funded by the Postdoctoral Scholar Program, The John E. and Anne W. Sawyer Endowed Fund, The J. Lamar Worzel Assistant Scientist Fund, and the Ocean and Climate Change Institute at the Woods Hole Oceanographic Institution.

Woods Hole Oceanographic Institution (WHOI) is a private, independent marine research and engineering and higher education organization located in Falmouth, MA. Its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment. Established in 1930 on a recommendation from the National Academy of Sciences, the Institution operates the US National Deep Submergence Facility that includes the deep-diving submersible Alvin, a fleet of global ranging ships and smaller coastal vessels, and a variety of other tethered and autonomous underwater vehicles. WHOI is organized into five departments, interdisciplinary institutes and a marine policy center, and conducts a joint graduate education program with the Massachusetts Institute of Technology.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu/media/2004_donnelly_lake_iroquois.html
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>