Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hidden fault may contribute to Bay Area earthquake risk

17.12.2004


Figure 1. Tectonic setting of region of proposed study. Generalized location of major fault strands through the San Francisco Bay region are shown by dashed lines. Primary study area is outlined by bos. Hypothetical blind thrusts are schematically indicated by ’dashed’ thrust fault symbols - are purely schematic at present. Mt. Tamalpais and Bolinas Ridge are identified
Credit: Penn State, Kevin Furlong


Earthquakes are not unusual in the San Francisco Bay Area, but a team of Penn State geoscientists believes that the hazard may be greater than previously thought because of a hidden fault under Marin County.

"We think we have evidence that there is an additional earthquake hazard in the San Francisco area due to a blind thrust fault," says Dr. Kevin P. Furlong, professor of geosciences. "Blind thrust faults are notorious because they are hard to find until an earthquake occurs on them. A blind thrust fault caused the 1994 Northridge earthquake."

The San Francisco Bay Area has a variety of known faults running through it. The San Andreas fault runs on the west, while the Hayward fault is on the east and shifts into the Rodgers Creek fault northeast of the city. The San Gregorio fault, west of the San Andreas, meets that fault near the Golden Gate Bridge.



The slip rate on the Hayward fault is about 9 millimeters a year and the slip on the Rodgers Creek fault is probably 6 to 9 millimeters a year, according to Furlong. These two rates are consistent. However, the slip on the San Andreas fault south of the Golden Gate Bridge is 17 millimeters per year and the slip rate north of the bridge is 24 millimeters per year. Adding in the San Gregorio fault slip of about 3 millimeters a year, the slip rate on the northern San Andreas is still inconsistent with the southern portion of the fault by as much as 4 millimeters per year.

Compounding the geological confusion is the existence of Mt. Tamalpais at 2,640 feet sitting northeast of San Francisco in Marin County. Geologists are unsure why Mt. Tamalpais is there and what formed it.

Furlong and Dr. Eric Kirby, assistant professor of geosciences, looked for an explanation for the different slip rates on the San Andreas fault north and south of the Golden Gate that would also explain how Mt Tamalpais came to rise above the bay.

"In the past, the thought was that there must be something wrong with the calculations on the San Gregorio fault," says Furlong. "That is, the slip rate must be closer to 7 millimeters per year because we do not see any other faults."

The researchers hypothesized that a fault running diagonally from the northern Hayward fault to the San Andreas in Marin County could transfer the necessary motion to the San Andreas and might explain high topography around Mt Tamalpais. However, proving the fault’s existence turns out to be a difficult task.

Thrust faults occur when one piece of terrain rides up over another forming a characteristic uplift pattern with one side gradually sloping up and the other more precipitous. Blind thrust faults terminate below the Earth’s surface and are therefore blind.

"We asked, can we demonstrate that Mt Tamalpais is currently going up, thrusting?" said Furlong. "Uplift rates are just at the limit of what can be measured with geographic positioning systems and there are not sufficient prior measurements on the mountain to compare with anyway," he told attendees at the fall conference of the American Geophysical Union in San Francisco.

Estimating that the uplift is about 1 millimeter per year – less than normally observable with GPS, the researchers looked for another way to measure uplift. They considered the topography of Marin County. Bolinas Ridge – just east of Point Reyes – runs up the west side of the area just to the west of Mt. Tamalpais and has a gradually rising slope, similar to the uplift predicted by a blind fault. It also has numerous streams running off the ridge peak into the San Andreas fault.

"If an area is uplifting, then we typically see steep rivers, but if the uplift is slow or nonexistent, then we see gentle rivers," says Furlong. "What we find is that the rivers become substantially steeper in the southern portion of Bolinas Ridge, implying that there may be active uplift in the area."

The rock making up Bolinas Ridge is of uniform composition, so differences in river slopes probably reflect differences in erosion rate. Assuming there is a blind thrust fault, the slip rate on the fault would need to be 3 to 4 millimeters to even out the discrepancies north and south of the Golden Gate Bridge. If the slip is 3 to 4 millimeters, then the researchers calculate that there would be potential for an earthquake of magnitude 6 to 6.5 on the fault occurring on a time scale of several hundred years.

Courtney B. Johnson, graduate student in Penn State’s department of geosciences, is presenting a poster that further explores the size and earthquake potential of the blind thrust fault.

"No large earthquakes have occurred in that area for at least the 150 to 200 years we have records," says Furlong. "In fact, there are very few earthquakes of any size in this general area."

The researchers are planning research to prove that the blind thrust fault exists. Unfortunately, standard seismic imaging will not work on the type of rock in the area, so alternative methods are necessary.

"The Loma Prieta earthquake did a lot of damage to the East Bay and Marina areas of San Francisco," says Furlong. "An earthquake in Marin County, while smaller, is much closer and is of concern not only to those in the county, but also to that part of San Francisco."

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>