Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hidden fault may contribute to Bay Area earthquake risk

17.12.2004


Figure 1. Tectonic setting of region of proposed study. Generalized location of major fault strands through the San Francisco Bay region are shown by dashed lines. Primary study area is outlined by bos. Hypothetical blind thrusts are schematically indicated by ’dashed’ thrust fault symbols - are purely schematic at present. Mt. Tamalpais and Bolinas Ridge are identified
Credit: Penn State, Kevin Furlong


Earthquakes are not unusual in the San Francisco Bay Area, but a team of Penn State geoscientists believes that the hazard may be greater than previously thought because of a hidden fault under Marin County.

"We think we have evidence that there is an additional earthquake hazard in the San Francisco area due to a blind thrust fault," says Dr. Kevin P. Furlong, professor of geosciences. "Blind thrust faults are notorious because they are hard to find until an earthquake occurs on them. A blind thrust fault caused the 1994 Northridge earthquake."

The San Francisco Bay Area has a variety of known faults running through it. The San Andreas fault runs on the west, while the Hayward fault is on the east and shifts into the Rodgers Creek fault northeast of the city. The San Gregorio fault, west of the San Andreas, meets that fault near the Golden Gate Bridge.



The slip rate on the Hayward fault is about 9 millimeters a year and the slip on the Rodgers Creek fault is probably 6 to 9 millimeters a year, according to Furlong. These two rates are consistent. However, the slip on the San Andreas fault south of the Golden Gate Bridge is 17 millimeters per year and the slip rate north of the bridge is 24 millimeters per year. Adding in the San Gregorio fault slip of about 3 millimeters a year, the slip rate on the northern San Andreas is still inconsistent with the southern portion of the fault by as much as 4 millimeters per year.

Compounding the geological confusion is the existence of Mt. Tamalpais at 2,640 feet sitting northeast of San Francisco in Marin County. Geologists are unsure why Mt. Tamalpais is there and what formed it.

Furlong and Dr. Eric Kirby, assistant professor of geosciences, looked for an explanation for the different slip rates on the San Andreas fault north and south of the Golden Gate that would also explain how Mt Tamalpais came to rise above the bay.

"In the past, the thought was that there must be something wrong with the calculations on the San Gregorio fault," says Furlong. "That is, the slip rate must be closer to 7 millimeters per year because we do not see any other faults."

The researchers hypothesized that a fault running diagonally from the northern Hayward fault to the San Andreas in Marin County could transfer the necessary motion to the San Andreas and might explain high topography around Mt Tamalpais. However, proving the fault’s existence turns out to be a difficult task.

Thrust faults occur when one piece of terrain rides up over another forming a characteristic uplift pattern with one side gradually sloping up and the other more precipitous. Blind thrust faults terminate below the Earth’s surface and are therefore blind.

"We asked, can we demonstrate that Mt Tamalpais is currently going up, thrusting?" said Furlong. "Uplift rates are just at the limit of what can be measured with geographic positioning systems and there are not sufficient prior measurements on the mountain to compare with anyway," he told attendees at the fall conference of the American Geophysical Union in San Francisco.

Estimating that the uplift is about 1 millimeter per year – less than normally observable with GPS, the researchers looked for another way to measure uplift. They considered the topography of Marin County. Bolinas Ridge – just east of Point Reyes – runs up the west side of the area just to the west of Mt. Tamalpais and has a gradually rising slope, similar to the uplift predicted by a blind fault. It also has numerous streams running off the ridge peak into the San Andreas fault.

"If an area is uplifting, then we typically see steep rivers, but if the uplift is slow or nonexistent, then we see gentle rivers," says Furlong. "What we find is that the rivers become substantially steeper in the southern portion of Bolinas Ridge, implying that there may be active uplift in the area."

The rock making up Bolinas Ridge is of uniform composition, so differences in river slopes probably reflect differences in erosion rate. Assuming there is a blind thrust fault, the slip rate on the fault would need to be 3 to 4 millimeters to even out the discrepancies north and south of the Golden Gate Bridge. If the slip is 3 to 4 millimeters, then the researchers calculate that there would be potential for an earthquake of magnitude 6 to 6.5 on the fault occurring on a time scale of several hundred years.

Courtney B. Johnson, graduate student in Penn State’s department of geosciences, is presenting a poster that further explores the size and earthquake potential of the blind thrust fault.

"No large earthquakes have occurred in that area for at least the 150 to 200 years we have records," says Furlong. "In fact, there are very few earthquakes of any size in this general area."

The researchers are planning research to prove that the blind thrust fault exists. Unfortunately, standard seismic imaging will not work on the type of rock in the area, so alternative methods are necessary.

"The Loma Prieta earthquake did a lot of damage to the East Bay and Marina areas of San Francisco," says Furlong. "An earthquake in Marin County, while smaller, is much closer and is of concern not only to those in the county, but also to that part of San Francisco."

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>