Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Eyes Ice Changes Around Earth’s Frozen Caps

15.12.2004


At 32 degrees Fahrenheit, or 0 Celsius, ice changes to water. This simple, unique fact dominates the climate in Earth’s polar regions. Using satellites to detect changes over time, NASA researchers and NASA-funded university scientists have found that Earth’s ice cover is changing rapidly near its poles. Recent studies point to new evidence of relationships between climate warming, ice changes and sea level rise.



Two researchers from NASA Goddard Space Flight Center (GSFC), Greenbelt, Md., and a glaciologist from the University of Colorado’s National Snow and Ice Data Center, Boulder, Colo., will discuss new findings related to Earth’s ice cover at a press conference on Dec. 14 at the 2004 meeting of the American Geophysical Union in San Francisco, Calif.

Waleed Abdalati, a NASA GSFC researcher, has worked with colleagues on a slew of recent papers on glaciers and ice sheets in the Northern Hemisphere. Bill Krabill of NASA Wallops Space Flight Center, Wallops Island, Va., Abdalati and others calculated that Greenland’s contributions to sea level rise nearly doubled in recent years, from 0.13 millimeters (mm) (.005 inches) per year in the mid 1990s, to 0.25 mm (.01 inches) per year from 1997 to 2003. Krabill’s study measured steady thinning in the region’s lower elevations near the coasts.


A recent NASA paper in Nature found that the world’s fastest glacier, called the Jakobshavn Isbrae, nearly doubled its speed from 1997 to 2003. The speedy ice stream’s quickening coincided with a break up of the floating ice that extends from the glacier out into the ocean, called an ice tongue. In 2003, this one glacier added to the world’s oceans an amount of water equal to about 4 percent of the estimated rate of sea level rise.

Abdalati also published a paper in the Journal of Geophysical Research assessing the contributions of the Canadian ice caps to sea level rise. During the late 1990s they contributed an estimated 0.065 mm (0.002 inches) per year, which, while not as large as those of Greenland and neighboring Alaska, is still quite significant. Perhaps more significant is the fact that like Greenland and Alaska the rate of ice loss appears to have accelerated in recent years.

Meanwhile, the Arctic Ocean’s perennial sea ice, or the sea ice that lasts all year long, continues to decline. Floating sea ice blankets the ocean surface, and does not contribute to sea level rise. But it is an important part of the climate system because the expansive white ice reflects the sun’s heating rays, prevents the oceans beneath it from absorbing more heat, influences ocean circulation, and regulates Earth’s climate. Between 2002 and 2004, Arctic sea ice has been exceptionally low. 2002 set a record for the lowest amount of late summer sea ice since satellite measurements of the area began in 1978. Josefino Comiso of NASA’s GSFC reported that between 1978 and 2000, the Arctic perennial sea ice declined by 8.9 percent per decade. The trend is now 9.2 percent per decade. These low levels continue to be sustained in 2003 and 2004.

While a few abnormally cold summers would help sea ice survive the summer melt, Comiso’s studies have found that on average, during the past 22 years, the Arctic warming rate is about 8 times higher than estimates of warming rates over the last 100 years.

In much of the Antarctic, a general cooling has been observed and sea ice has mostly increased over the last 30 years but the Antarctic Peninsula has been an exception since it has warmed and similar rapid changes as those found in the northern hemisphere have been observed.

For example, in the eastern Antarctic Peninsula, very rapid climate warming began in the 1950s, causing mean temperatures to increase by about 2.5 degrees Celsius (4.5 Fahrenheit), according to Scambos. As temperatures have warmed, land and sea ice have melted. In March 2002, the Rhode-Island-sized Larsen B ice shelf collapsed, the largest in a series of such retreats that began to take place around 1985 and have steadily increased.

In the aftermath of this collapse, two NASA studies, one led by Scambos, showed that glaciers flowing into the bay areas behind the Larsen ’B’ ice shelf accelerated by 3- to 8-fold in just 18 months after the breakup. This finding points to similar mechanisms as those discovered by Abdalati and colleagues in Greenland’s Jakobshavn ice stream. Satellite images revealed that the Antarctic glaciers’ speed-up began almost immediately after the collapse of the shelf. Data from NASA’s new ICESat satellite indicate that the trunk of one glacier decreased in elevation by over 30 meters in just six months.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/lookingatearth/icecover.html
http://www.nasa.gov

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>