Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Eyes Ice Changes Around Earth’s Frozen Caps

15.12.2004


At 32 degrees Fahrenheit, or 0 Celsius, ice changes to water. This simple, unique fact dominates the climate in Earth’s polar regions. Using satellites to detect changes over time, NASA researchers and NASA-funded university scientists have found that Earth’s ice cover is changing rapidly near its poles. Recent studies point to new evidence of relationships between climate warming, ice changes and sea level rise.



Two researchers from NASA Goddard Space Flight Center (GSFC), Greenbelt, Md., and a glaciologist from the University of Colorado’s National Snow and Ice Data Center, Boulder, Colo., will discuss new findings related to Earth’s ice cover at a press conference on Dec. 14 at the 2004 meeting of the American Geophysical Union in San Francisco, Calif.

Waleed Abdalati, a NASA GSFC researcher, has worked with colleagues on a slew of recent papers on glaciers and ice sheets in the Northern Hemisphere. Bill Krabill of NASA Wallops Space Flight Center, Wallops Island, Va., Abdalati and others calculated that Greenland’s contributions to sea level rise nearly doubled in recent years, from 0.13 millimeters (mm) (.005 inches) per year in the mid 1990s, to 0.25 mm (.01 inches) per year from 1997 to 2003. Krabill’s study measured steady thinning in the region’s lower elevations near the coasts.


A recent NASA paper in Nature found that the world’s fastest glacier, called the Jakobshavn Isbrae, nearly doubled its speed from 1997 to 2003. The speedy ice stream’s quickening coincided with a break up of the floating ice that extends from the glacier out into the ocean, called an ice tongue. In 2003, this one glacier added to the world’s oceans an amount of water equal to about 4 percent of the estimated rate of sea level rise.

Abdalati also published a paper in the Journal of Geophysical Research assessing the contributions of the Canadian ice caps to sea level rise. During the late 1990s they contributed an estimated 0.065 mm (0.002 inches) per year, which, while not as large as those of Greenland and neighboring Alaska, is still quite significant. Perhaps more significant is the fact that like Greenland and Alaska the rate of ice loss appears to have accelerated in recent years.

Meanwhile, the Arctic Ocean’s perennial sea ice, or the sea ice that lasts all year long, continues to decline. Floating sea ice blankets the ocean surface, and does not contribute to sea level rise. But it is an important part of the climate system because the expansive white ice reflects the sun’s heating rays, prevents the oceans beneath it from absorbing more heat, influences ocean circulation, and regulates Earth’s climate. Between 2002 and 2004, Arctic sea ice has been exceptionally low. 2002 set a record for the lowest amount of late summer sea ice since satellite measurements of the area began in 1978. Josefino Comiso of NASA’s GSFC reported that between 1978 and 2000, the Arctic perennial sea ice declined by 8.9 percent per decade. The trend is now 9.2 percent per decade. These low levels continue to be sustained in 2003 and 2004.

While a few abnormally cold summers would help sea ice survive the summer melt, Comiso’s studies have found that on average, during the past 22 years, the Arctic warming rate is about 8 times higher than estimates of warming rates over the last 100 years.

In much of the Antarctic, a general cooling has been observed and sea ice has mostly increased over the last 30 years but the Antarctic Peninsula has been an exception since it has warmed and similar rapid changes as those found in the northern hemisphere have been observed.

For example, in the eastern Antarctic Peninsula, very rapid climate warming began in the 1950s, causing mean temperatures to increase by about 2.5 degrees Celsius (4.5 Fahrenheit), according to Scambos. As temperatures have warmed, land and sea ice have melted. In March 2002, the Rhode-Island-sized Larsen B ice shelf collapsed, the largest in a series of such retreats that began to take place around 1985 and have steadily increased.

In the aftermath of this collapse, two NASA studies, one led by Scambos, showed that glaciers flowing into the bay areas behind the Larsen ’B’ ice shelf accelerated by 3- to 8-fold in just 18 months after the breakup. This finding points to similar mechanisms as those discovered by Abdalati and colleagues in Greenland’s Jakobshavn ice stream. Satellite images revealed that the Antarctic glaciers’ speed-up began almost immediately after the collapse of the shelf. Data from NASA’s new ICESat satellite indicate that the trunk of one glacier decreased in elevation by over 30 meters in just six months.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/lookingatearth/icecover.html
http://www.nasa.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>