Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s Aura: New Eye for Clean Air

15.12.2004


Essential Air



Take a deep breath. On Earth the air is easy to take for granted. It’s everywhere. But if you take a rocket into space the Earth’s atmosphere falls away. Astronauts understand this at an instinctive level. Unlike just about every other career in the world, astronauts must bring their own atmosphere to work. It is this essential nature about the atmosphere that generated such high expectations for NASA’s Aura satellite. Launched in July of 2004, this powerful research platform is already providing the first-ever daily, direct global measurements of low altitude or tropospheric ozone and many other pollutants that affect our air quality. Moreover, Aura delivers its results with unprecedented clarity over a region. The instruments onboard will help scientists monitor pollution production and transport around the world.

Measurements taken from the satellite also offer the potential for new insights into how climate changes influence the recovery of the stratospheric or upper ozone layer, the protective region that shields the Earth from ultra-violet radiation. "Data from NASA missions like Aura are a valuable national asset," said Phil DeCola, Aura Program Scientist, NASA Headquarters, Washington DC. " For example, clean air is a vital need, and air quality is not merely a local issue.


New Look at the Air We Breathe

Many city dwellers cope with discouraging overdoses of pollution and "Code Red" ozone days. But many people don’t realize that their pollution woes may originate in distant places. Winds can transport pollution thousand of miles from its sources. Smoke from remote wilderness forest fire can have a measurable impact on the air quality in a distant city. Pollution from the industrialized Midwest can affect air quality in the Northeast, and pollution from Asia can affect air quality in California. From space, the instruments on Aura have the necessary perspective to see these connections in ways that simply can’t be done from the ground. That view becomes a tool in itself to help experts understand just what’s happening and why.
Water Vapor Measurement
of Ozone Layer

The Satellite

Aura measures five of the six "criteria pollutants" as identified by the U.S. Environmental Protection Agency. Its suite of sophisticated instruments was designed with the goal of providing global data collection of air pollution on a daily basis. The four instruments onboard include: the Tropospheric Emission Spectrometer (TES), the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI), and the High Resolution Dynamics Limb Sounder (HIRDLS). Together, these instruments comprise a powerful chemistry laboratory for studying the Earth’s atmosphere.
Artist rendering of Aura satellite.

The Body of the Air, Starting at the Ground

We live in the troposphere; a region of air that begins at the ground and rises approximately 17 kilometers (11 miles). But the atmosphere rises far above the troposphere, split into multiple layers. Aura will help researchers make determinations about the chemical interactions happening in different layers of the sky to better understand both human induced and natural processes that continue to shape our world. But the actual amount of specific pollutants, and how they behave in the atmosphere makes pollution transport a challenge. Simply put, it’s hard to quantify how much industrial sources and internal combustion engines contribute to poor low level air quality at local or regional scales. In addition, the presence of stratospheric ozone sandwiched between the satellite and the lower atmosphere makes "seeing" tropospheric ozone very difficult. Two of Aura’s instruments called TES (Tropospheric Emission Spectrometer) and Microwave Limb Sounder (MLS) uses new technology to see through that low level ozone. This see-thru capability promises a new era in tracking pollution sources and destinations.

Peering into the High Stratosphere

Aura looks at the stratosphere in new ways, too. Where ozone in the upper atmospheric layer is vital to life on Earth, ozone in the lower atmosphere can be hazardous to the health of humans, plants and animals. Commercial airplanes fly just below the stratosphere. Among other attributes, the stratosphere contains a protective layer of ozone that protects us from harmful solar radiation. Aura’s MLS instrument (Microwave Limb Sounder) has just started collecting daily data about the physical and chemical processes that influence the health of the protective ozone by measuring other chemicals in the atmosphere that affect ozone chemistry worldwide. MLS data provide the most complete chemical measurements available to understand the ozone layer and its predicted recovery. This instrument also measures the upper tropospheric water vapor abundance, a key component in the radiation budget. Water vapor is a key climate change and determining how much energy the Earth absorbs or reflects from the sun.

Ozone: The "Hole" Story

The ozone hole is really a region of atmosphere where ozone levels have been dramatically depleted by destructive interactions with other chemicals. This depleted zone forms each spring in the Southern Hemisphere, centered roughly over the south pole. The British Antarctic Survey discovered it in 1985, and since then it has become a major area of atmospheric research. Subsequent missions established that the ozone hole was caused by the introduction of human produced chlorofluorocarbons emitted into the atmosphere. The first measurements that established cause of the Antarctic ozone hole was from an instrumented NASA airplane. The size of the ozone hole grew steadily in the 1990s. NASA satellites monitor the growth size and evolution of the ozone hole. NASA’s UARS satellite further developed the chemistry.

Recent initiatives by governments around the world have curtailed the production of additional chlorofluorocarbons. But damaging chemicals still persist in the upper atmosphere, and scientists expect the "hole" to persist for at least forty years Aura’s instrument called OMI (Ozone Monitoring Instrument) makes global measurements of stratospheric ozone with four times better spatial resolution than its predecessor, NASA’s EP-TOMS (Earth Probe Total Ozone Mapping Spectrometer). The TOMS series flew on seven different satellites over the last 25 years. OMI continues the TOMS legacy. But it also extends the NASA’s reach. OMI is a sensitive instrument capable of detecting a host of chemicals, other trace gases, such as nitrogen dioxide and chlorine monoxide, that impact air quality. Like TOMS, OMI will allow experts to derive the total amount of ultraviolet radiation reaching the Earth’s surface, enabling the National Weather Service to forecast high ultraviolet index days for public health.

Eyes up

Launched on a Delta II 7920 rocket on July 15, 2004 from Vandenberg Air Force Base, California, Aura is the third and final major Earth Observing System (EOS) satellite. Aura’s view of the atmosphere and its chemistry will complement the global data already being collected by NASA’s two other Earth Observing System satellites called Terra and Aqua. Collectively, these satellites allow scientists to study how land, water, and the atmosphere work together as a system. Aura takes the space agency’s atmospheric research capabilities to a new level of expertise. The ability of its various instruments to discern subtle quantitative and qualitative distinctions in chemical interactions will help experts not only understand how the atmosphere works, but also provide information to policy makers for sound decisions about the future of our world.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/lookingatearth/aura_first.html
http://www.nasa.gov

More articles from Earth Sciences:

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

nachricht World's first solar fuels reactor for night passes test
21.02.2018 | SolarPACES

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>