Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice cores disagree on origin of White River ash deposit

15.12.2004


One anticipated component missing from an ice core drilled through a high-mountain, Alaskan ice field may force researchers to rethink the geologic history of that region.



Ohio State University scientists had expected to find a thick layer of volcanic tephra - evidence of a massive historic eruption - near the bottom of core they drilled between Mount Bona and Mount Churchill, both ancient volcanoes, in southeast Alaska’s St. Elias Mountain Range. That tephra layer would provide new evidence that Mount Churchill had been the source of an eruption that blanketed hundreds of thousands of square miles in the Pacific Northwest, creating a deposit known as the White River Ash.

The problem is that the ice core contains no ash layer. “Our drill site was so close to the crater of Mount Churchill that if it had erupted in 803 A.D., then ash would have been preserved somewhere in our record in the core,” explained Tracy Mashiotta, a research associate with the Byrd Polar Research Center. “We drilled all the way through the glacier to the bedrock below and didn’t find any ash.” “Without a visible ash layer in the core, we don’t believe that Mount Churchill could have been the source for that deposit.” explained Lonnie Thompson, professor of geological sciences and researcher with the Byrd Polar Research Center.


They reported their findings today at the meeting of the American Geophysical Union in San Francisco. The researcher’s conviction lies with the analysis of six cores they recovered in 2003 from an ice field in a saddle between the two peaks. Along with five shallow cores ranging from 10.5 meters (34.4 feet) to 114 meters (374 feet), the researchers drilled a complete 460-meter (1,509-foot) core through the ice to bedrock, capturing a climatological record preserved in the ice.

The five shallow cores contain a record ranging from eight to 64 years. The long core - itself the longest ever drilled through a mountainous glacier – dates back nearly 1,500 years. And that presents a problem for the current interpretation of geology in the region. Researchers have dated the two White River Ash deposits to two eruptions in the last two millennia - one in approximately 803 A.D. and the other in around 63 A.D – that were thought to come from the same volcano. And many scientists have suspected Mount Churchill was the site of those eruptions. If so, those blasts would have deposited layers of volcanic ash at the top of the mountain, including on the ice present at the time. And over time, that layer would have been buried deep in the ice.

Expecting to find it, the OSU team had engineered a new drill bit for their drill capable of piercing the expected one-meter-thick (3.2-foot) ash layer. But it wasn’t there. “Both ash deposits have been thought to come from the same volcano,” Mashiotta said. “If we didn’t see evidence from the ice core pointing to an eruption in 803 A.D., it’s unlikely that Mount Churchill was the source of the earlier deposit from 63 A.D.

Besides the missing ash layer, the core offered more evidence that the White River Ash wasn’t born on Mount Churchill. Towards the bottom of the long core, they discovered layers of pebbles trapped in the ice. The pebbles were made of granodiorite, a non-volcanic rock. In fact, granodiorite is widely seen as a marker that shows the passing of the massive ice sheets that once blanketed the Western Cordillera of North America. Thompson said the bottom two meters (6.5 feet) of the core contained numerous layers of these pebbles as well.

The research team serendipitously arrived at a time when the surface at the summit of Mount Churchill - near the crater - was free of snow cover. There they found large granodiorite stones and boulders. Had the mountain erupted since they were deposited, Thompson said, they would have been covered by deep ash. Thompson believes both the stones at the crater rim and the pebble layers are remnants of those ice sheets. And the fact that they found multiple layers in the core suggests the area had been overrun by ice several times.

Another clue was missing from the core that might have pointed to Mount Churchill as the source of the deposit. They found distinct markers of high sulfate content at various points in the core, traceable to several famous eruptions but nothing traceable to Churchill. “We found sulfate from the eruptions of Katmai in Alaska in 1912, from Tambora in Indonesia in 1815 and from Laki in Iceland in 1783,” Mashiotta said. “If in 803, there was a big eruption of Mount Churchill 300 meters from our drill site, we would have seen sulfate there. And we didn’t.”

The core contains other “gems” as well as clues to the White River Ash. The climate record includes the period of the “Little Ice Age,” a period from 1450 A.D. to 1850 A.D., when the climate dramatically cooled, as well as evidence of “Medieval Warm Period,” from 1000 A.D. to 1400 A.D. The core should even provide a long-term history of dust blown from north-central China across the Pacific Ocean to fall on the Alaskan mountain.

Along with Mashiotta and Thompson, Mary Davis, a research associate with the Byrd Polar Research Center, is working on this project. The National Science Foundation supported this research.

Lonnie Thompson | EurekAlert!
Further information:
http://www.osu.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>