Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice cores disagree on origin of White River ash deposit

15.12.2004


One anticipated component missing from an ice core drilled through a high-mountain, Alaskan ice field may force researchers to rethink the geologic history of that region.



Ohio State University scientists had expected to find a thick layer of volcanic tephra - evidence of a massive historic eruption - near the bottom of core they drilled between Mount Bona and Mount Churchill, both ancient volcanoes, in southeast Alaska’s St. Elias Mountain Range. That tephra layer would provide new evidence that Mount Churchill had been the source of an eruption that blanketed hundreds of thousands of square miles in the Pacific Northwest, creating a deposit known as the White River Ash.

The problem is that the ice core contains no ash layer. “Our drill site was so close to the crater of Mount Churchill that if it had erupted in 803 A.D., then ash would have been preserved somewhere in our record in the core,” explained Tracy Mashiotta, a research associate with the Byrd Polar Research Center. “We drilled all the way through the glacier to the bedrock below and didn’t find any ash.” “Without a visible ash layer in the core, we don’t believe that Mount Churchill could have been the source for that deposit.” explained Lonnie Thompson, professor of geological sciences and researcher with the Byrd Polar Research Center.


They reported their findings today at the meeting of the American Geophysical Union in San Francisco. The researcher’s conviction lies with the analysis of six cores they recovered in 2003 from an ice field in a saddle between the two peaks. Along with five shallow cores ranging from 10.5 meters (34.4 feet) to 114 meters (374 feet), the researchers drilled a complete 460-meter (1,509-foot) core through the ice to bedrock, capturing a climatological record preserved in the ice.

The five shallow cores contain a record ranging from eight to 64 years. The long core - itself the longest ever drilled through a mountainous glacier – dates back nearly 1,500 years. And that presents a problem for the current interpretation of geology in the region. Researchers have dated the two White River Ash deposits to two eruptions in the last two millennia - one in approximately 803 A.D. and the other in around 63 A.D – that were thought to come from the same volcano. And many scientists have suspected Mount Churchill was the site of those eruptions. If so, those blasts would have deposited layers of volcanic ash at the top of the mountain, including on the ice present at the time. And over time, that layer would have been buried deep in the ice.

Expecting to find it, the OSU team had engineered a new drill bit for their drill capable of piercing the expected one-meter-thick (3.2-foot) ash layer. But it wasn’t there. “Both ash deposits have been thought to come from the same volcano,” Mashiotta said. “If we didn’t see evidence from the ice core pointing to an eruption in 803 A.D., it’s unlikely that Mount Churchill was the source of the earlier deposit from 63 A.D.

Besides the missing ash layer, the core offered more evidence that the White River Ash wasn’t born on Mount Churchill. Towards the bottom of the long core, they discovered layers of pebbles trapped in the ice. The pebbles were made of granodiorite, a non-volcanic rock. In fact, granodiorite is widely seen as a marker that shows the passing of the massive ice sheets that once blanketed the Western Cordillera of North America. Thompson said the bottom two meters (6.5 feet) of the core contained numerous layers of these pebbles as well.

The research team serendipitously arrived at a time when the surface at the summit of Mount Churchill - near the crater - was free of snow cover. There they found large granodiorite stones and boulders. Had the mountain erupted since they were deposited, Thompson said, they would have been covered by deep ash. Thompson believes both the stones at the crater rim and the pebble layers are remnants of those ice sheets. And the fact that they found multiple layers in the core suggests the area had been overrun by ice several times.

Another clue was missing from the core that might have pointed to Mount Churchill as the source of the deposit. They found distinct markers of high sulfate content at various points in the core, traceable to several famous eruptions but nothing traceable to Churchill. “We found sulfate from the eruptions of Katmai in Alaska in 1912, from Tambora in Indonesia in 1815 and from Laki in Iceland in 1783,” Mashiotta said. “If in 803, there was a big eruption of Mount Churchill 300 meters from our drill site, we would have seen sulfate there. And we didn’t.”

The core contains other “gems” as well as clues to the White River Ash. The climate record includes the period of the “Little Ice Age,” a period from 1450 A.D. to 1850 A.D., when the climate dramatically cooled, as well as evidence of “Medieval Warm Period,” from 1000 A.D. to 1400 A.D. The core should even provide a long-term history of dust blown from north-central China across the Pacific Ocean to fall on the Alaskan mountain.

Along with Mashiotta and Thompson, Mary Davis, a research associate with the Byrd Polar Research Center, is working on this project. The National Science Foundation supported this research.

Lonnie Thompson | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>