Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strange ocean wave patterns raise questions about beach erosion

14.12.2004


Engineers who were studying beach erosion got more than they bargained for recently when they discovered unexpected wave behavior in the water along an east coast shoreline.



The finding could ultimately cause researchers to re-examine ideas about beach erosion and the repair of beaches that are damaged by tropical storms. “It could just be that the physics of the system is a little different than we thought,” said Thomas Lippmann, a research scientist in the Department of Civil and Environmental Engineering and a researcher with the Byrd Polar Research Center at Ohio State University.

When the Ohio State researchers utilized data collected by collaborators at Duck, NC, to calibrate a new remote sensing method for studying ocean currents, they expected to find some complex wave flow patterns in the water. Researchers have long known that the surf contains many different currents that interact to affect how sand washes away from a beach. That’s why mitigating beach erosion is so difficult, Lippmann said.


But their close examination of the oscillating water flow at different depths revealed a surprisingly intricate system of patterns, with surface currents not always in sync with the bottom flow. As Lippmann reported his team’s early results Monday at the meeting of the American Geophysical Union in San Francisco, he declined to speculate on what causes the strange flow patterns. For instance, they found regions where the water near the surface was rotating in one direction -- say, clockwise -- and the water just a meter or two below it was rotating counterclockwise. Taken together, the unusual patterns make for a more complicated picture of water movement than most researchers suspected, Lippmann said.

Scientists may have to take the new findings into account when they design computer models of beach erosion, nearshore circulation, or water quality. These topics are of particular interest to coastal towns, where erosion causes millions of dollars in property losses each year. Constant erosion, compounded by sudden beach loss during tropical storms, threatens the multibillion-dollar tourist industry.

Coastal residents have tried to counter erosion by adding sand to beaches or building artificial seawalls out of wood or rocks, but some studies have shown that these efforts do not provide a permanent solution -- and may actually increase erosion in certain situations. Researchers need to better understand how erosion works in order to develop better mitigation strategies, Lippmann said.

That’s why researchers from many different institutions have planted special underwater sensors along the beach in Duck, NC. Although the sensors take very accurate measurements of water movement just above the sand, they are very expensive and require expert installation. Lippmann and his colleagues recently came up with a less expensive method: a video camera system that tracks the foam from breaking waves. Once the system is fully developed, it could monitor wave motion for a fraction of the cost. The engineers discovered the strange water flow patterns while they were attempting to verify measurements obtained from the camera system.

Back in 2000, their video-based measurements, which they then took from towers along the coastline at Duck, compared favorably with data from the in-water sensors. Because their measurements didn’t precisely match up -- they found differences as large as 20 percent -- Lippmann wondered if the discrepancy wasn’t due to the fact that the camera system was looking at the surface of the water, while the sensors were measuring currents down at the seafloor.

To examine whether flows within the water column were affecting the results, Lippmann and colleagues from the Naval Postgraduate School re-examined some unique data that was collected at the US Army Corps of Engineer’s Field Research Facility in Duck in 1994. That experiment involved vertical arrays of sensors that measured water movement at different depths.

That data confirmed that the water on the sea floor was moving slower -- and, sometimes, even in the opposite direction -- compared to water on the surface. So it turned out that the video system was getting accurate measurements after all. “We were feeling pretty good about that,” Lippmann said, “Then we noticed that there was a lot more going on in the water column than we first realized.”

If the engineers hadn’t been trying to calibrate the camera system, they may not have looked so closely at the oscillatory flow patterns, and may not have observed the strange behavior. Now, Lippmann said, researchers may have to re-evaluate how they study motions along the shoreline.

The Office of Naval Research funded this work.

Thomas Lippmann | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>