Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team discovers life in Rock Glacier

14.12.2004


A University of Colorado at Boulder research team has discovered evidence of microbial activity in a rock glacier high above tree line in the Rocky Mountains, a barren environment previously thought to be devoid of life.


An image of a rock glacier, the large hump in front of the mountain in photo taken at the Niwot Ridge Long-Term Ecological Research site west of Boulder, Colo. Photo courtesy Meredith Knauf, University of Colorado at Boulder



Found in an intermittent stream draining from the glacier, the evidence includes traces of dissolved organic material and high levels of nitrates, said Mark Williams, a fellow at CU-Boulder’s Institute of Arctic and Alpine Research. The high nitrate levels are believed to be a result of microbes metabolizing nitrogen within the glacier, said CU-Boulder graduate student Meredith Knauf.

Rock glaciers are large masses of rock debris interspersed with ice in the high mountains of temperate areas. Moving at speeds of just inches or a few feet a year, they require an extremely cold environment, large amounts of rock debris and enough of a slope to allow them to slide.


"This is a very surprising finding, something we did not expect," said Williams. "The upshot is that we have shown that rock glaciers are not biological deserts as had been previously thought by scientists. This is one more example that microbes can live in the most extreme of environments."

Williams said the microbial "signature" discovered by the team in the rock glacier in the Green Lakes Valley watershed roughly 30 miles west of Boulder, Colo., is similar to that found recently in semi-frozen lakes in the Dry Valleys of Antarctica. The unexpected discovery of microbes in that hostile Antarctica region has enthused scientists hunting for life in inhospitable environments, he said.

Both the amount of dissolved organic matter and nitrate levels from microbial activity in the rock glacier rose dramatically from the late spring to the early fall in 2003, said Knauf of CU-Boulder’s geography department. "This increase indicates that the biological signal is coming from meltwater inside the rock glacier, rather than from terrestrial microbial activity in the tundra around it," she said.

Knauf gave a presentation on the discovery at the Fall Meeting of the American Geophysical Union held Dec. 13 to Dec. 17 in San Francisco.

The Green Lakes Valley watershed is part of the Niwot Ridge Long-Term Ecological Research site that is supported by the National Science Foundation. Niwot Ridge is the only one of NSF’s 26 LTER sites worldwide that is located in a sub-alpine and alpine environment.

The dissolved organic carbon molecules from the rock glacier, which are large and complex, are very similar in structure to molecules found by the researchers in Antarctica, said Knauf. "The microbial activity we are seeing appears to be much more like what researchers have found in the Dry Valleys of Antarctica than anything found in North American temperate areas," she said.

Microbes, which are microscopic, single-celled organisms, have been found residing in boiling water in deep-sea ocean vents, clinging to ice in subterranean polar lakes and living in rocks two miles underground. Such microbes, known popularly as "extremophiles," also have been found living inside of nuclear reactors and even in the brickwork of 4,800-year-old Peruvian pyramids.

Since Earth’s most extreme environments are thought by scientists to resemble environments found on distant planets, such examples of extremophiles on Earth have caught the interest of astrobiologists, said Williams. "Parts of Antarctica are seen as an analog to environments on Mars by researchers, and we see this rock glacier environment as a new analogue to Antarctica," he said.

Microbes, which have been shown to metabolize elements like iron, nitrogen and sulfur, appear to require water in order to live, grow and reproduce. Previously at the Niwot Ridge study area, microbes living under the tundra snow pack have been shown to be active in sub-zero conditions, breaking down plant material and metabolizing nitrogen in the dead of winter, Williams said.

Following the discovery in the Green Lakes Valley, the CU-Boulder research team discovered evidence of microbial life in rock glaciers in southern Colorado and in Wyoming, said Knauf.

Other CU-Boulder researchers involved in the study include INSTAAR Fellow Nel Caine, graduate student Rose Cory and former graduate student Fengjing Liu.

Mark Williams | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>