Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A deep sea hydrocarbon factory

13.12.2004


A team of University of Minnesota scientists has discovered how iron- and chromium-rich rocks can generate natural gas (methane) and related hydrocarbons when reacted with superheated fluids circulating deep beneath the floor of the Atlantic Ocean.

Because the process is completely nonbiological, the hydrocarbons could have been a source of "food" for some of the first organisms to inhabit the Earth. Also, methane is a potent greenhouse gas, and this process may have contributed to global warming early in geologic time, the researchers said. The researchers--Dionysios Foustoukos and Fu Qi and their graduate adviser, professor W.E. Seyfried, Jr.--will present a portion of this work Monday, Dec. 13, at the American Geophysical Union meeting in the Moscone Convention Center, San Francisco.

The most familiar sources of methane are bacteria that live in bogs, lakes and the stomachs of ruminants like cows. But before any life existed, there must have been an energy source that could be tapped by primitive life forms. The simplest sources are hydrogen-rich compounds like hydrogen gas, hydrogen sulfide gas and hydrocarbons.



In the laboratory, the researchers recreated the intense heat (more than 700 degrees F) and pressure (400 times air pressure at sea level) that exist on the ocean bottom in parts of the Mid-Atlantic Ridge (MAR). The MAR, which runs in a jagged north-south line beneath the Atlantic Ocean, is a site where upwelling magma is slowly pushing huge slabs of crust apart, exposing portions of the Earth’s upper mantle. It contains structures called hydrothermal (hot water) vents, which spew superheated fluids into the seawater. The team found that under such conditions, hydrocarbons--methane, ethane and propane--could be produced on the surface of minerals rich in iron and chromium.These hydrocarbons may help account for the diverse communities of life that typically thrive around hydrothermal vents.

The process of hydrocarbon production occurs in two steps. In the first, an iron compound in rock strips water of its oxygen, liberating hydrogen gas. In the second step, hydrogen gas and carbon dioxide (from the degassing of magma) combine to produce methane and water. The Minnesota team discovered that rocks rich in chromium minerals accelerate the second step, while also producing more complex hydrocarbons--ethane and propane. Both likely serve as food for some bacteria.

"The second step is a reaction well known to chemists," said Seyfried, a professor of geology and geophysics. "But in several papers published in the last few years, researchers have noted great difficulty in forming hydrocarbons more complex than methane. Dionysios [Foustoukas] showed that in the presence of chromium-bearing minerals, it could happen.

"Chemists might want to tweak this process and see if they can produce hydrocarbons more efficienty. But we want to get clues about what goes on in hydrothermal vents and to understand how hydrocarbon gases are generated in the continental and oceanic crust."

In related work, Seyfried and and his colleague Kang Ding have built chemical sensors that can be placed in hydrothermal vents to measure such items as acidity and the amounts of gases like hydrogen and hydrogen sulfide, which also serve as energy sources for microbial communities. Acidity also seems to play a role in hydrocarbon synthesis in submarine hydrothermal systems. To access the vents as deep as two miles beneath the sea surface, the researchers use the submersible ALVIN; they have now dived to a number of vent sites.

Deane Morrison, | EurekAlert!
Further information:
http://www.umn.edu

More articles from Earth Sciences:

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

nachricht Thawing permafrost releases old greenhouse gas
19.07.2017 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>