Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia Team Shows How Stratospheric Conditions Affect Weather

09.12.2004


New research may improve long-term forecasting skills


The above map shows a snapshot of surface temperature in the Northern Hemisphere, with weather systems moving poleward. In the paper, the authors demonstrate that this process is influenced by the presence of a stratospheric jet.



The authors, left to right: Andrew Charlton, postdoctoral student; Matthew Wittman, graduate student and principal author; and Lorenzo Polvani, Professor of Applied Physics and Applied Mathematics & Earth and Environmental Sciences and Director of the IGERT Joint Program in Applied Mathematics and Earth and Environmental Sciences.
by Jennifer Freeman

Three members of Columbia’s Department of Applied Physics and Applied Mathematics have used a simple climate model to demonstrate how the weather systems and storms we experience may be influenced by disturbances in the Earth’s stratosphere, the upper layer of atmosphere between 10 and 30 miles high. This Earth Institute research was recently highlighted by the American Geophysical Union, following recent publication in the journal Geophysical Research Letters. “Our research shows that changes to the strength of winds in the stratosphere cause changes to tropospheric weather systems” explained lead-author Matthew Wittman.



Understanding how the stratosphere affects the troposphere, the lowermost layer of the atmosphere where weather occurs, is important to improving seasonal weather forecasts and predicting the effect of ozone depletion and global warming on our climate. “The stratosphere has a longer ‘memory’ than the troposphere,” adds co-author Andrew Charlton. “If you want to make forecasts on a time scale longer than several days, it is useful to understand the mechanisms linking places with longer memories, such as the stratosphere and the oceans to the troposphere.”

Each winter a westerly jet — called the Polar Night Jet — forms in the stratosphere. Winds in this jet circulate around the pole at speeds of up to 100 miles per hour. The strength of this jet changes as part of normal atmospheric variability, and possibly also in response to climate change. In their new research, the authors show that the presence of stronger westerly jets in the stratosphere causes tropospheric weather systems to track further towards the pole.

Averaging the changes to the paths of weather systems, the research team showed, produces a pattern of changes similar in structure to the Arctic Oscillation, the dominant pattern of climate variability in the Northern Hemisphere that describes how temperatures across the whole hemisphere vary together.

The research is part of the team’s ongoing efforts to understand the interaction of the stratosphere and troposphere and improve the representation of this interaction in climate models. The Columbia co-authors — Matthew Wittman, Lorenzo Polvani, Richard Scott and Andrew Charlton — are affiliated with the climate research group at the Earth Institute at Columbia.

The Earth Institute at Columbia University is the world’s leading academic center for the integrated study of Earth, its environment and society. The Earth Institute builds upon excellence in the core disciplines — earth sciences, biological sciences, engineering sciences, social sciences and health sciences — and stresses cross-disciplinary approaches to complex problems. Through research, training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor. (Jennifer Freeman)

Mary Tobin | EurekAlert!
Further information:
http://www.earth.columbia.edu
http://www.columbia.edu

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>