Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how rate of tectonic plate separation controls geologic processes

09.12.2004


A new study has revealed a mechanism that counters established thinking on how the rate at which tectonic plates separate along mid-ocean ridges controls processes such as heat transfer in geologic materials, energy circulation and even biological production.



The study also pioneered a new seismic technique – simultaneously shooting an array of 20 airguns to generate sound -- for studying the Earth’s mantle, the layer beneath the 10- to 40-kilometer-deep crust on the seafloor. The research, led by the Georgia Institute of Technology with funding from the National Science Foundation (NSF), will be reported in the Dec. 9, 2004 issue of the journal Nature.

"Mid ocean ridges produce most of the volcanism on the Earth, releasing a lot of heat – in some places enough to support large biological communities on the seafloor," said Daniel Lizarralde, lead author of the Nature paper and an assistant professor in the Georgia Tech School of Earth and Atmospheric Sciences.


"There are large variations in the amount of ridge volcanism worldwide that are probably controlled by processes deep in the mantle," he explained. "Those processes leave behind an imprint in the crust and mantle that have moved away from ridge. In this study, we did something new. We went well away from ridge where things have cooled down and looked at those imprints."

Previous research has shown that slow rates of plate separation, or spreading, correlate to dramatic changes in various processes occurring at mid-ocean ridges. But researchers have not had a thorough understanding of this cause and effect relationship. Hoping to reveal that connection, Lizarralde and his colleagues chose to study an extreme case that occurred over a 35-million-year period along an 800-kilometer line southwest of Bermuda in the western Atlantic Ocean.

They found that as the spreading rate changes, the ability of molten rock, or melt, to get out of the mantle is hindered. "It’s like air getting swept up into the atmosphere, water droplets forming and then not being able to fall out as rain," Lizarralde explained. "That’s a weird system, and that’s what’s happening along slow-spreading ridges. The melt gets stuck there, and that changes the thermal balance of things and the buoyancy of the mantle."

This finding differs from the established idea that a slow spreading rate at a mid-ocean ridge cools geologic materials and doesn’t produce much melt. "We found that it’s probably not as cold in the melt zone as we thought," Lizarralde said. "The same amount of melt is produced, but it gets trapped…. The implication of the differences between the old notion and ours is that the mechanisms we propose can explain variations in the chemistry of rocks that come out at mid-ocean ridges worldwide."

Some scientists believe these geochemical variations are best explained by heterogeneity of the mantle. But others point to evidence indicating the mantle is generally uniform, which is consistent with material mixing caused by heat transfer in convection, Lizarralde explained.

"Now, our mechanism explains this geochemical variability, while still having a uniform mantle," he added. "If the mantle retains some of the melt, -- like we’re saying -- it’s likely that it would preferentially keep some chemicals in that melt and let others out."

The research team reached its conclusion with data gathered using a new technique devised by Lizarralde, an active-source seismologist, who generates and measures his own sounds to study the Earth’s crust and mantle. Passive-source seismologists deploy seismometers and rely on earthquakes to produce the acoustic waves they need to study the crust and mantle. Until now, scientists have not used active-source seismic techniques to study the mantle because of a technical difficulty -- sound travels much slower in water than in the earth, interfering with signal reception.

"After a certain window during which you can record the energy traveling through the earth, you find a lot of energy rattling around in the water," Lizarralde explained. "It tends to block the signals. So we changed the way we were shooting an array of airguns we used to generate sound. As a result, we were able to study the mantle and look at the residual products of melting and flow that happened at a mid-ocean ridge."

Lizarralde and his colleagues simultaneously released compressed air from an array of 20 airguns – each a meter in length and 8 inches in radius -- straight down from the ocean surface at different points along their study area. Seismometers on the seafloor recorded the energy traveling through the earth.

"The energy goes down and then turns when it gets into the earth and heads back toward surface in a long arc," Lizarralde explained. "The deeper you want to see into the earth, the farther the separation needed between your sound source and your receiver to make the arc longer and longer. The technical challenge is to record sound at these long offsets of receiver distances of 300 to 400 kilometers. That’s what we were able to do in this study."

Lizarralde and 17 other scientists -- including researcher Jim Gaherty and Georgia Tech graduate student Sangmyung Kim, co-authors of the Nature paper -- gathered their data during a month-long research cruise in the summer of 2001.The ship they used is operated by Lamont-Doherty Earth Observatory of Columbia University, where Gaherty, a former Georgia Tech assistant professor, now conducts research.

Jane Sanders | EurekAlert!
Further information:
http://www.gatech.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>