Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how rate of tectonic plate separation controls geologic processes

09.12.2004


A new study has revealed a mechanism that counters established thinking on how the rate at which tectonic plates separate along mid-ocean ridges controls processes such as heat transfer in geologic materials, energy circulation and even biological production.



The study also pioneered a new seismic technique – simultaneously shooting an array of 20 airguns to generate sound -- for studying the Earth’s mantle, the layer beneath the 10- to 40-kilometer-deep crust on the seafloor. The research, led by the Georgia Institute of Technology with funding from the National Science Foundation (NSF), will be reported in the Dec. 9, 2004 issue of the journal Nature.

"Mid ocean ridges produce most of the volcanism on the Earth, releasing a lot of heat – in some places enough to support large biological communities on the seafloor," said Daniel Lizarralde, lead author of the Nature paper and an assistant professor in the Georgia Tech School of Earth and Atmospheric Sciences.


"There are large variations in the amount of ridge volcanism worldwide that are probably controlled by processes deep in the mantle," he explained. "Those processes leave behind an imprint in the crust and mantle that have moved away from ridge. In this study, we did something new. We went well away from ridge where things have cooled down and looked at those imprints."

Previous research has shown that slow rates of plate separation, or spreading, correlate to dramatic changes in various processes occurring at mid-ocean ridges. But researchers have not had a thorough understanding of this cause and effect relationship. Hoping to reveal that connection, Lizarralde and his colleagues chose to study an extreme case that occurred over a 35-million-year period along an 800-kilometer line southwest of Bermuda in the western Atlantic Ocean.

They found that as the spreading rate changes, the ability of molten rock, or melt, to get out of the mantle is hindered. "It’s like air getting swept up into the atmosphere, water droplets forming and then not being able to fall out as rain," Lizarralde explained. "That’s a weird system, and that’s what’s happening along slow-spreading ridges. The melt gets stuck there, and that changes the thermal balance of things and the buoyancy of the mantle."

This finding differs from the established idea that a slow spreading rate at a mid-ocean ridge cools geologic materials and doesn’t produce much melt. "We found that it’s probably not as cold in the melt zone as we thought," Lizarralde said. "The same amount of melt is produced, but it gets trapped…. The implication of the differences between the old notion and ours is that the mechanisms we propose can explain variations in the chemistry of rocks that come out at mid-ocean ridges worldwide."

Some scientists believe these geochemical variations are best explained by heterogeneity of the mantle. But others point to evidence indicating the mantle is generally uniform, which is consistent with material mixing caused by heat transfer in convection, Lizarralde explained.

"Now, our mechanism explains this geochemical variability, while still having a uniform mantle," he added. "If the mantle retains some of the melt, -- like we’re saying -- it’s likely that it would preferentially keep some chemicals in that melt and let others out."

The research team reached its conclusion with data gathered using a new technique devised by Lizarralde, an active-source seismologist, who generates and measures his own sounds to study the Earth’s crust and mantle. Passive-source seismologists deploy seismometers and rely on earthquakes to produce the acoustic waves they need to study the crust and mantle. Until now, scientists have not used active-source seismic techniques to study the mantle because of a technical difficulty -- sound travels much slower in water than in the earth, interfering with signal reception.

"After a certain window during which you can record the energy traveling through the earth, you find a lot of energy rattling around in the water," Lizarralde explained. "It tends to block the signals. So we changed the way we were shooting an array of airguns we used to generate sound. As a result, we were able to study the mantle and look at the residual products of melting and flow that happened at a mid-ocean ridge."

Lizarralde and his colleagues simultaneously released compressed air from an array of 20 airguns – each a meter in length and 8 inches in radius -- straight down from the ocean surface at different points along their study area. Seismometers on the seafloor recorded the energy traveling through the earth.

"The energy goes down and then turns when it gets into the earth and heads back toward surface in a long arc," Lizarralde explained. "The deeper you want to see into the earth, the farther the separation needed between your sound source and your receiver to make the arc longer and longer. The technical challenge is to record sound at these long offsets of receiver distances of 300 to 400 kilometers. That’s what we were able to do in this study."

Lizarralde and 17 other scientists -- including researcher Jim Gaherty and Georgia Tech graduate student Sangmyung Kim, co-authors of the Nature paper -- gathered their data during a month-long research cruise in the summer of 2001.The ship they used is operated by Lamont-Doherty Earth Observatory of Columbia University, where Gaherty, a former Georgia Tech assistant professor, now conducts research.

Jane Sanders | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>