Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH scientist co-authors report in Nature showing movement of glacier has doubled speed

03.12.2004


The world’s fastest glacier, Greenland’s Jakobshavn Isbrae, doubled its speed between 1997 and 2003. The rapid movement of ice from land into the sea provides key evidence of newly discovered relationships between ice sheets, sea level rise and climate warming.



The findings were reported in the journal Nature on December 2, 2004. Co-authoring the study was University of New Hampshire glaciologist Mark Fahnestock of the Institute for the Study of Earth, Oceans, and Space (EOS).

The researchers found the glacier’s sudden speed-up also coincides with very rapid thinning, indicating loss of ice of up to 15 meters (16.4 yards) in thickness per year after 1997. Along with increased rates of ice flow and thinning, the floating ice that extends from the mouth of the glacier into the ocean, called the ice tongue, began retreating in 2000, breaking up almost completely by May 2003.


The authors began looking at the flow of this glacier using satellite pictures after pronounced thinning was measured by a NASA aircraft.

The satellite imagery revealed the dramatic acceleration. Fahnestock found this signal to be quite striking. "This speedup is the most dramatic change observed in a large glacier to date", Fahnestock said. "Observing a doubling of the flow of one of the large rivers of ice draining the Greenland Ice Sheet in such a short time raises questions about the nature and stability of the ice sheet,"

The NASA-funded study relies on data from satellites and airborne lasers to derive ice movements. The study’s lead author, Ian Joughin, conducted much of this research while working at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. Joughin is currently a glaciologist at the Applied Physics Laboratory at the University of Washington, Seattle. Co-authors include Waleed Abdalati, a senior scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md., and Fahnestock.

"In many climate models glaciers are treated as responding slowly to climate change," Joughin said. "In this study we are seeing a doubling of output beyond what most models would predict. The ice sheets can respond rather dramatically and quickly to climate changes." "This finding suggests the potential for more substantial thinning in other glaciers in Greenland," Abdalati added. "Other glaciers have thinned by over a meter a year, which we believe is too much to be attributed to melting alone. We think there is a dynamic effect where the glaciers are accelerating as warming causes conditions to change at the boundaries of these ice streams."

The researchers used satellite and other data to observe large changes in both speeds and thickness between 1985 and 2003. The data showed that the glacier slowed down from a velocity of 6700 meters (4.2miles) per year in 1985 to 5700 meters (3.5 miles) per year in 1992. This latter speed remained somewhat constant until 1997. By 2000, the glacier had sped up to 9400 meters (5.8 miles) per year, topping out with the last measurement in spring 2003 at 12,600 meters (7.7miles) per year.

Airborne laser altimetry measurements of Jakobshavn’s surface elevation, made previously by researchers at NASA’s Wallops Flight Facility, showed a thickening or building up of the glacier from 1991 to 1997, coinciding closely with the glacier’s slow-down. Similarly, the glacier began thinning by as much as 15 meters (16.4 yards) a year just as its velocity began to increase between 1997 and 2003.

The authors used synthetic aperture radar (SAR) data from Canada’s RADARSAT and the European Space Agency’s European Remote Sensing Satellites to measure the glacier’s velocity in 1992, 1994, 1995 and 2000. They also tracked distinct features in NASA Landsat image pairs to determine velocities in 2001, 2002 and 2003. Speeds from 1997 were determined using airborne laser survey data. Researchers at the University of Maine and Ohio State University used airborne photographs to calculate historical 1985 velocities.

The acceleration comes at a time when the floating ice near the glacier’s calving front has shown some unusual behavior. Despite its relative stability from the 1950s through the 1990s, the glacier’s ice tongue began to break apart in 2000, leading to almost complete disintegration in 2003. The tongue’s thinning and break up likely reduced its restraining effects on the ice behind it, as several speed increases coincided with losses of sections of the ice tongue as it broke up. Recent NASA-funded research in the Antarctic Peninsula showed similar increases in glacier flow following the Larson B ice shelf break-up.

Jakobshavn Isbrae is Greenland’s largest outlet glacier, draining 6.5 percent of Greenland’s ice sheet area. The ice stream’s speed-up and near-doubling of ice flow from land into the ocean is important because this one glacier has increased the rate of sea level rise by about .06 millimeters per year, or roughly 4 percent of the 20th century rate of sea level increase.

David Sims | EurekAlert!
Further information:
http://www.unh.edu

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>