Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argo Robotic Instrument Network Now Covers Most of the Globe

02.12.2004


International network reaches 1,500th float deployment-halfway to full array




Note: This news release is issued in conjunction with the Group on Earth Observations (GEO-5) and the Partnership for Observation of the Global Oceans (POGO-6) international meetings held the week of Nov. 29, 2004.

Scientists have crossed an important threshold in an international effort to deploy a global network of robotic instruments to monitor and investigate important changes in the world’s oceans.


Researchers with the international Argo program announced they have reached the point where 1,500 ocean-traveling float instruments-half the target 3,000-float array- are now operating. This marks an important milestone in the program’s mission to capture valuable data around the globe.

The Argo floats, which are robotically programmed to record and transmit data, are uniquely positioned to provide important information about climate and weather phenomena. Other applications of Argo information include: ocean heat storage and climate change; ocean salinity changes due to rainfall; ocean-driven events such as El Niño; impacts of ocean temperature on fisheries and regional ecosystems; interactions between the ocean and monsoons; and how the oceans drive hurricanes and typhoons.

"With 1,500 floats in the water we are now looking at almost the whole planet," said Scripps Institution of Oceanography’s John Gould, Argo international project director. "It’s exciting to see so many countries involved in Argo and having them cooperate in monitoring the planet-oceanographers and climate scientists around the world now regard Argo as the key ocean element of an underwater global-observing system."

With the number of instruments crossing the midpoint, the information being beamed back from the floats is increasingly being used for science and weather research. Twelve ocean and climate/weather centers around the world use Argo data in regional analyses and forecasts.

Scientists such as Scripps’s Dean Roemmich, chairman of the steering team for Argo, are using the data for new insights into ocean processes, information not available only a few years ago.

For example, a recent joint effort between Scripps Institution and a group from New Zealand has vastly increased the number of floats deployed in the south Pacific Ocean. The new data has allowed Roemmich to make new observations about the area’s ocean circulation and how currents have become stronger since last measured by ship-based techniques in the 1990s.

Other scientists are finding new ways to use the data.

"We will be able to get information about short-lived events, such as hurricanes," said Gould. "When a hurricane is building up and it goes across an area, if there is a float underneath it you can actually see how much energy the hurricane has sucked out of the upper ocean."

The full Argo array of 3,000 floats is expected to be deployed by 2007. Argo floats are autonomous ocean-traveling robots programmed to sink more than a mile below the ocean surface (see animation) and drift for as long as four years. Every 10 days the instruments surface to record temperature, salinity and currents and to relay the information to satellites. Within hours the information is transmitted to the Global Telecommunications System and is freely available on the Internet. The floats then sink again to begin a new cycle.

The developments leading to Argo’s ability to operate globally were made in the early 1990s by Scripps scientist Russ Davis. Twenty-five percent of the floats in the Argo array are built at Scripps. Each float is designed for a four-year lifespan, or approximately 150 cycles. Some have lasted longer.

"If anyone is concerned about what the climate will be like over a five- or 10-year period, they will have to look to the oceans to find answers to their questions," said Gould. "Argo is becoming one of the key tools for monitoring what is going on in the oceans. So if there are any surprises, then we will get prior warning about them from Argo."

Eighteen countries contribute floats to the array and many others provide assistance with float deployment and access to their nation’s waters.

Scripps Institution, Woods Hole Oceanographic Institution, the University of Washington and the National Oceanic and Atmospheric Administration’s (NOAA) Pacific Marine Environmental Laboratory are United States float operating partners in Argo. NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) handles U.S. float data. The United States also operates one of Argo’s two global data centers. U.S. Argo is funded by NOAA.

Argo is sponsored by the World Climate Research Program’s Climate Variability and Predictability project (CLIVAR) and by the Global Ocean Data Assimilation Experiment (GODAE). It is a pilot project of the Global Ocean Observing System (GOOS).

Mario Aguilera | EurekAlert!
Further information:
http://scrippsnews.ucsd.edu/article_detail.cfm?article_num=659
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>