Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stratosphere temperature data support scientists’ proof for global warming

30.11.2004


A new interpretation for temperature data from satellites, published earlier this year, raised controversy when its authors claimed it eliminated doubt that, on average, the lower atmosphere is getting warmer as fast as the Earth’s surface.

Now, in another study headed by the same researcher to be published Dec. 15 in the Journal of Climate, direct temperature data from other scientists has validated the satellite interpretation. A team headed by Qiang Fu, a University of Washington atmospheric sciences associate professor, earlier examined measurements collected from January 1979 through December 2001 by devices called microwave-sounding units on National Oceanic and Atmospheric Administration satellites. Different channels of the microwave-sounding units measure radiation at different frequencies, providing data for different layers of the atmosphere.

In the case of the troposphere, the layer from the surface to an altitude of about 7.5 miles, where most weather occurs, it was believed there had been less warming than what was recorded at the surface. However, Fu’s team determined the satellite readings of the troposphere were imprecise because about one-fifth of the signal actually came from a higher atmosphere layer called the stratosphere, which for the last few decades has been cooling several times faster than the troposphere has been warming. The group devised a method to remove the stratosphere signal from the satellite data and was left with results that closely matched the warming at the surface. That work was published in May in the journal Nature.



However, critics contended the method overcompensated for the cooling effects of the stratosphere and thus overstated the amount of warming in the troposphere. The criticisms did not appear in peer-reviewed journals. In the new study, Fu and Celeste Johanson, a UW atmospheric sciences graduate student, used direct stratosphere temperature measurements to examine the contamination from the stratosphere in the satellite channel that measures troposphere temperatures. They also used the same data to evaluate their method for removing the stratosphere contamination. The data they used came from scientists at NOAA and the Hadley Centre for Climate Prediction and Research in England.

Using the direct stratosphere temperature trend profiles from 1979 through 2001, Fu’s team found that the stratosphere contamination in the satellite channel measuring the troposphere amounted to about a minus one-tenth of a degree Celsius per decade. They used their new method to remove the contamination, leaving an influence from the stratosphere of less than one-hundredth of a degree on troposphere temperature trends. The results match closely with what would be expected from the Fu team’s new interpretation of satellite data. "These results are consistent with the results that the Nature paper gets," Fu said. "It is an independent check of the problem because we used completely independent data sets. The independent observations agree with our conclusions, and that’s quite powerful evidence."

The Fu team’s work indicates the troposphere has been warming at about two-tenths of a degree Celsius, or nearly one-third of a degree Fahrenheit, per decade. That closely resembles measurements of warming at the surface, something climate models have suggested would result if the warmer surface temperatures are the result of greenhouse gases.

The findings are important because, for years, satellite data inconsistent with warming at the surface have fueled the debate about whether climate change is actually occurring.

If contamination of troposphere signals by those from the stratosphere isn’t taken into account for the last 25 years, Fu said, estimates of how much warming actually occurred in the troposphere during that time would be off by 40 percent to 70 percent.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht New plate adds plot twist to ancient tectonic tale
15.08.2017 | Rice University

nachricht Global warming will leave different fingerprints on global subtropical anticyclones
14.08.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>