Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic Shaking Erased Small Impact Craters On Asteroid Eros

26.11.2004


University of Arizona scientists have discovered why Eros, the largest near-Earth asteroid, has so few small craters.

When the Near Earth Asteroid Rendezvous (NEAR) mission orbited Eros from February 2000 to February 2001, it revealed an asteroid covered with regolith -- a loose layer of rocks, gravel and dust -- and embedded with numerous large boulders. The spacecraft also found places where the regolith apparently had slumped, or flowed downhill, exposing fresh surface underneath.

But what NEAR didn’t find were the many small craters that scientists expected would pock Eros’ landscape. "Either the craters were being erased by something or there are fewer small asteroids than we thought," James E. Richardson Jr. of UA’s planetary sciences department said.

Richardson concludes from modeling studies that seismic shaking has obliterated about 90 percent of the asteroid’s small impact craters, those less than 100 meters in diameter, or roughly the length of a football field. The seismic vibrations result when Eros collides with space debris.

Richardson, Regents’ Professor H. Jay Melosh and Professor Richard Greenberg, all with UA’s Lunar and Planetary Laboratory, report the analysis in the Nov. 26 issue of Science. "Eros is only about the size of Lake Tahoe -- 20 miles (33 kilometers) long by 8 miles (13 kilometers) wide," Richardson said. "So it has a very small volume and a very low gravity. When a one-to-two-meter or larger object hits Eros, the impact will set off global seismic vibrations. Our analysis shows how these vibrations easily destabilize regolith overlaying the surface."

A rock-and-dust layer creeps, rather than crashes, down shaking slopes because of Eros’ weak gravity. The regolith not only slides down horizontally, but also is launched ballistically from the surface and ’hops’ downslope. Very slowly, over time, impact craters fill up and disappear, Richardson said.

If Eros were still in the main asteroid belt between Mars and Jupiter, a 200-meter crater would fill in about 30 million years. Because Eros is now outside the asteroid belt, that process takes a thousand times longer, he added.

Richardson’s research results match the NEAR spacecraft evidence. Instead of the expected 400 craters as small as 20 meters (about 70 feet) per square kilometer (three-fifths mile) on Eros’ surface, there are on average only about 40 such craters.

The modeling analysis also validates what scientists suspect of Eros’ internal structure. "The NEAR mission showed Eros to most likely be a fractured monolith, a body that used to be one competent piece of material," Richardson said. "But Eros has been fractured throughout by large impacts and is held together primarily by gravity. The evidence is seen in a series of grooves and ridges that run across the asteroid’s surface both globally and regionally."

Large impacts fracture Eros to its core, but many smaller impacts fracture only the upper surface. This gradient of big fractures deep inside and numerous small fractures near the surface is analogous to fractures in the upper lunar crust, Richardson said. "And we understand the lunar crust -- we’ve been there. We’ve put seismometers on the moon. We understand how seismic energy propagates through this kind of structure."

The UA scientists’ analysis of how impact-induced seismic shaking has modified Eros’ surface has a couple of other important implications. "If we eventually do send spacecraft to mine resources among the near-Earth asteroids or to deflect an asteroid from a potential collision with the Earth, knowing internal asteroid structure will help address some of the strategies we’ll need to use. In the nearer future, sample return missions will encounter successively less porous, more cohesive regolith as they dig farther down into asteroids like Eros, which has been compacted by seismic shaking," Richardson noted.

"And it also tells us about the small asteroid environment that we’ll encounter when we do send a spacecraft out into the main asteroid belt, where Eros spent most of its lifetime. We know the small asteroids -- those between the size of a beachball and a football stadium -- are out there. It’s just that their ’signature’ on asteroids such as Eros is being erased," Richardson said.

This finding is important because the cratering record on large asteroids provides direct evidence for the size and population of small main-belt asteroids. Earth-based telescopic surveys have catalogued few main-belt asteroids that small. So scientists have to base population estimates for these objects primarily on visible cratering records and asteroid collisional history modeling, Richardson said.

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>