Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Invasive sea squirt alive and well on Georges Bank


Image DSCF1526. Tunicate colony of a species of the genus Didemnum encrusting and cementing a pebble gravel seabed and crowding a dark orange anemone (lower part of photo). Note the relatively few holes in the mat where the gray background is visible. Northern Georges Bank (41 deg 54.429 min N lat, 67 deg 27.146 min W lon). Water depth 59 m (194 ft). November 2004. Width of specimen shown is 9 inches. Collectors: Page Valentine, Jeremy Collie, and Robert Reid. Photo credit: Dann Blackwood, U.S. Geological Survey.

Image DSCF1537. Underside of tunicate mat in image DSCF1526 showing pebble gravel cemented by colonial tunicates (pale yellow color). Note the relatively few holes in the mat where the gray background is visible. Northern Georges Bank (41 deg 54.429 min N lat, 67 deg 27.146 min W lon). Water depth 59 m (194 ft). November 2004. Width of specimen shown is 5.6 inches. Collectors: Page Valentine, Jeremy Collie, and Robert Reid. Photo credit: Dann Blackwood, U.S. Geological Survey.

The invasive sea squirt that federal and university researchers discovered on Georges Bank a year ago is flourishing in U.S. waters near the U.S.-Canada boundary, a joint research team announced today following a research cruise that concluded last week.

Scientists from the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), and the University of Rhode Island estimate that mats made of thousands of individual squirts infest a 40 square mile area of seabed that is highly productive for fish and sea scallops. In large parts of the affected area, the sea squirts cover 50 percent or more of the seabed. The Georges Bank infestation is unique, the only known occurrence of this magnitude in a major offshore fishing ground.

Sea squirts are tunicates, a type of sea life with a primitive spinal cord and a firm, flexible outer covering called a "tunic," from which the name derives. A filter-feeding species of the genus Didemnum, they form dense mats, made of thousands of individuals, by attaching to firm substrates such as gravel, sea scallops, mussels, docks and other structures, and even seaweed. Tunicates can overgrow sea scallops and mussels, and they may affect other species of clams and worms that live in the seabed below the tunicate colony. An "invasive species" is one that is not native to an ecosystem, and that may harm that ecosystem if introduced.

In the fall of 2003, the same research team first spotted this infestation over roughly 6 square miles of ocean bottom during a scientific cruise to study habitats on Georges Bank. This year, the team surveyed a larger area with tunicate coverage.

The scientists observed mats over at least 40 square miles of the gravel substrate on the northern edge of Georges Bank. Video and photo transects using the USGS seabed observation and sampling system (SEABOSS) documented the distribution of the tunicate colonies in water depths of 42 to 65 meters (138 to 213 feet). The cruise was conducted aboard the NOAA Ship Delaware II.

Scientists will analyze data they collected on the cruise to determine if the tunicate invasion has the potential to alter seabed communities that sustain commercial fish species. Tunicate fragments were also found in the stomachs of haddock and winter flounder collected in the area, but did not appear to be digested. Samples of the tunicate will be evaluated to determine its nutritional value to predators, and to confirm the species through DNA analysis.

The tunicate can spread by reproducing either sexually or asexually by budding. The free-swimming tadpoles produced by sexual reproduction live only a few days, during which time they can be spread by tidal and storm currents to form new colonies. By contrast, fragments of colonies are long-lived. Controlled experiments in Cape Cod waters by USGS and Woods Hole Oceanographic Institution scientists have shown that small pieces removed from Didemnum colonies increase dramatically by budding in a matter of weeks. Thus, fragmentation of tunicate mats could promote the spread of the species.

The Didemnum species occurs along the coasts of the Netherlands and France. In the U.S., it has been documented in coastal New England from Connecticut to northern Maine, along the California coast, and in October of this year, it was first reported in Puget Sound off Edmonds, Washington. The same species (or a close relative) is present at several localities in New Zealand. Officials in Edmonds and in New Zealand have used chemical applications and physical removal in attempts to eradicate the relatively small infestations there.

The species thrives in marine environments that lie within its preferred temperature range (28 to 75 degrees F) and that have firm substrates and plentiful food, conditions that are widespread off the coasts of New England and Atlantic Canada. It could change gravel habitats that lie along the northern edge of Georges Bank, and immobile sand habitats characteristic of southerly Bank. Didemnum cannot survive on habitats of moving sand, and therefore much of the shallow Bank crest is not threatened. It is not yet known to occur on mud habitats that are typical of the deep basins of the Gulf of Maine.

Ellen Mecray | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>