Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive sea squirt alive and well on Georges Bank

22.11.2004


Image DSCF1526. Tunicate colony of a species of the genus Didemnum encrusting and cementing a pebble gravel seabed and crowding a dark orange anemone (lower part of photo). Note the relatively few holes in the mat where the gray background is visible. Northern Georges Bank (41 deg 54.429 min N lat, 67 deg 27.146 min W lon). Water depth 59 m (194 ft). November 2004. Width of specimen shown is 9 inches. Collectors: Page Valentine, Jeremy Collie, and Robert Reid. Photo credit: Dann Blackwood, U.S. Geological Survey.


Image DSCF1537. Underside of tunicate mat in image DSCF1526 showing pebble gravel cemented by colonial tunicates (pale yellow color). Note the relatively few holes in the mat where the gray background is visible. Northern Georges Bank (41 deg 54.429 min N lat, 67 deg 27.146 min W lon). Water depth 59 m (194 ft). November 2004. Width of specimen shown is 5.6 inches. Collectors: Page Valentine, Jeremy Collie, and Robert Reid. Photo credit: Dann Blackwood, U.S. Geological Survey.


The invasive sea squirt that federal and university researchers discovered on Georges Bank a year ago is flourishing in U.S. waters near the U.S.-Canada boundary, a joint research team announced today following a research cruise that concluded last week.

Scientists from the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), and the University of Rhode Island estimate that mats made of thousands of individual squirts infest a 40 square mile area of seabed that is highly productive for fish and sea scallops. In large parts of the affected area, the sea squirts cover 50 percent or more of the seabed. The Georges Bank infestation is unique, the only known occurrence of this magnitude in a major offshore fishing ground.

Sea squirts are tunicates, a type of sea life with a primitive spinal cord and a firm, flexible outer covering called a "tunic," from which the name derives. A filter-feeding species of the genus Didemnum, they form dense mats, made of thousands of individuals, by attaching to firm substrates such as gravel, sea scallops, mussels, docks and other structures, and even seaweed. Tunicates can overgrow sea scallops and mussels, and they may affect other species of clams and worms that live in the seabed below the tunicate colony. An "invasive species" is one that is not native to an ecosystem, and that may harm that ecosystem if introduced.



In the fall of 2003, the same research team first spotted this infestation over roughly 6 square miles of ocean bottom during a scientific cruise to study habitats on Georges Bank. This year, the team surveyed a larger area with tunicate coverage.

The scientists observed mats over at least 40 square miles of the gravel substrate on the northern edge of Georges Bank. Video and photo transects using the USGS seabed observation and sampling system (SEABOSS) documented the distribution of the tunicate colonies in water depths of 42 to 65 meters (138 to 213 feet). The cruise was conducted aboard the NOAA Ship Delaware II.

Scientists will analyze data they collected on the cruise to determine if the tunicate invasion has the potential to alter seabed communities that sustain commercial fish species. Tunicate fragments were also found in the stomachs of haddock and winter flounder collected in the area, but did not appear to be digested. Samples of the tunicate will be evaluated to determine its nutritional value to predators, and to confirm the species through DNA analysis.

The tunicate can spread by reproducing either sexually or asexually by budding. The free-swimming tadpoles produced by sexual reproduction live only a few days, during which time they can be spread by tidal and storm currents to form new colonies. By contrast, fragments of colonies are long-lived. Controlled experiments in Cape Cod waters by USGS and Woods Hole Oceanographic Institution scientists have shown that small pieces removed from Didemnum colonies increase dramatically by budding in a matter of weeks. Thus, fragmentation of tunicate mats could promote the spread of the species.

The Didemnum species occurs along the coasts of the Netherlands and France. In the U.S., it has been documented in coastal New England from Connecticut to northern Maine, along the California coast, and in October of this year, it was first reported in Puget Sound off Edmonds, Washington. The same species (or a close relative) is present at several localities in New Zealand. Officials in Edmonds and in New Zealand have used chemical applications and physical removal in attempts to eradicate the relatively small infestations there.

The species thrives in marine environments that lie within its preferred temperature range (28 to 75 degrees F) and that have firm substrates and plentiful food, conditions that are widespread off the coasts of New England and Atlantic Canada. It could change gravel habitats that lie along the northern edge of Georges Bank, and immobile sand habitats characteristic of southerly Bank. Didemnum cannot survive on habitats of moving sand, and therefore much of the shallow Bank crest is not threatened. It is not yet known to occur on mud habitats that are typical of the deep basins of the Gulf of Maine.

Ellen Mecray | EurekAlert!
Further information:
http://www.usgs.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>