Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Riders on the storm

19.11.2004


Drifting buoys & floats weather hurricanes for better storm prediction



While some are still cleaning up from the series of hurricanes that plowed through the Caribbean and southern United States this season, scientists supported by the Office of Naval Research are busily cleaning up valuable data collected during the storms. The rapid-fire hurricanes barely gave researchers time to rest between flights that took them into the hearts of Hurricanes Frances, Ivan, and Jeanne. As part of a project called CBLAST, for Coupled Boundary Layer/Air-Sea Transfer, researchers air-dropped specially designed instruments into the paths of the hurricanes--and into the hurricanes themselves.

"This season has seen a breakthrough in hurricane and oceanographic research," said ONR program manager Dr. Carl Friehe. "Real-time data sent back by the drifters and floats have created great interest among oceanographers, meteorologists, and hurricane forecasters." Project CBLAST-Hurricane focuses on the energy exchanges between the ocean and atmosphere during a hurricane, and how those interactions affect a storm’s intensity (a separate CBLAST component studies low-wind interactions). By better understanding these energy exchanges, scientists can develop better models to predict a hurricane’s development. A hurricane’s intensity determines the size of the storm surge of water that precedes it--which can pose a significant threat to ships in port.


New instruments that can measure the ocean water’s temperature, salt content, and velocity--before, during, and after a hurricane--are providing a unique view of the conditions that affect a storm’s intensity. While satellites can provide ocean temperature data, they only monitor the "skin" or surface of the ocean down to just 1/8th of an inch. To reach into lower depths, ONR has sponsored the development of new ocean probes by Dr. Eric D’Asaro and Dr. Tom Sanford of the University of Washington Applied Physics Laboratory (Seattle), and Dr. Peter Niiler and Dr. Eric Terrill of Scripps Institution of Oceanography (La Jolla, Ca).

The data collected on water conditions over the course of a hurricane are crucial to forecast modeling because "the ocean is the gasoline for the hurricane’s engine," explained ONR’s Friehe. During the summer and fall, the sun warms the top hundred meters or so of the ocean. Hurricanes only form over these warm ocean regions, where water easily evaporates and is picked up by swirling weather patterns. "In order to build a model that can predict a storm’s development, we need to know exactly how much energy is in the water, as well as how it is distributed by depth and location between Africa and the Caribbean," he said.

The floats from the UW Applied Physics Lab and Scripps are programmed to bob up and down through the upper 200 meters (656 ft) of the ocean, measuring the water’s temperature, salinity, dissolved gases, and velocity. They also monitor underwater sounds as part of a study to develop methods of measuring hurricane force winds and rainfall. The floats from the Applied Physics Lab are deployed in a line perpendicular to a hurricane’s path, so that one is centered on the eye, another is about 50 km (27 nautical miles) to the north of the eye, and a third 100 km (54 nm) to the north. Each time the instruments reach the water’s surface, they transmit data back to scientists using satellite communications.

Drifters from the Scripps team remain on the ocean’s surface, floating like bottles with a message that’s constantly updated as their instruments measure air pressure, wind speed and direction, and sea surface temperature. They can collect data for as long as their batteries continue to function (up to several months) or they can be picked up by passing ships for reuse and downloading of more detailed information than they are able to transmit. The drifters and floats were dropped into the paths of this season’s hurricanes by the U.S. Air Force Reserve 53rd Weather Reconnaissance Squadron (Keesler AFB, Miss.) from two C130J Hercules aircraft. The probes parachuted into the ocean and automatically began taking measurements. They returned time series of ocean profiles that documented the upwelling and mixing caused by the hurricanes. Several of the floats and drift buoys obtained an unprecedented second set of hurricane observations as Hurricane Jeanne followed closely on the path of Frances.

While the drifters and floats weathered the storms from sea level and below, other CBLAST instruments--and researchers--flew through Hurricane Jeanne in two National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft. From various altitudes throughout the storms, and with the help of fixed and deployed instruments, they collected data on air temperature and pressure, wind speed and direction, and precipitation. The combination of atmospheric and ocean science, technology (GPS, cell phones, miniature computers, etc.), deployment via aircraft, and the need for better hurricane forecasting have all come together in 2004 to mark a sea change in hurricane research, according to Friehe.

NOAA provides project management for CBLAST, as well as researchers, aircraft, flight crews, and other support through its Hurricane Research Division, Aircraft Operations Center, and Office of Oceanic and Atmospheric Research. Researchers from the University of Miami, Rosenstiel School; University of Washington Applied Physics Lab; Scripps Institution of Oceanography; Massachusetts Institute of Technology; and the University of Massachusetts Microwave Remote Sensing Laboratory also participated. The 5-year (FY01-FY05) funding amount for CBLAST Hurricane is: $5.3 M from ONR and $0.7 M from NOAA’s U.S. Weather Research Program (USWRP).

Jennifer Huergo | EurekAlert!
Further information:
http://www.onr.navy.mil

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>