Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering Arctic climate puzzles - New findings from the Arctic Coring Expedition

17.11.2004


An international team of scientists is currently evaluating sediment cores collected during the Arctic Coring Expedition, ACEX, conducted under the auspices of the Integrated Ocean Drilling Program (IODP). ACEX, conducted in August and September this year, is an exploration success story. At a press conference in the University of Bremen, Germany, today (16 November 2004) the co-chief scientists of the expedition described the first results from this expedition.



Scientists from ten countries gathered in Bremen over the last two weeks. They analyzed sediment cores from 430 metres beneath the Arctic Ocean sea-floor. These cores reveal new insights into the past climate of the Arctic. Preliminary results show that the ACEX recovered the first ever climate record of the Arctic Ocean over the past 56 million years. Co-chief scientists Kate Moran, University of Rhode Island, and Jan Backman, Stockholm University, described key findings.

The Arctic Ocean was frozen much earlier than previoulsy thought. Professor Moran said that “we are trying to define the exact time when ice appeared but it seems clear that perennial ice existed as early as 15 million years ago”. Professor Jan Backman added that these results would become more precise over the next few months and “we have cores that will hopefully allow us to distinguish between seasonal (winter only) ice and perennial ice”.


Initial offshore results indicate that the upper hundred and sixty meters represent a record of the past ~15 million years comprised of sediment with ice-rafted debris and occasional small pebbles, suggesting that ice covered conditions extended at least this far back in time. Details of the ice cover, timing and characteristic (e.g., perennial vs. seasonal cover) awaits further study.

The sediment record during the late Eocene is of dark, organic-rich siliceous composition with a depositional environment dominated by ice-free, warmer surface ocean waters. An interval recovered around 49 million years ago reveals an abundance of a freshwater fern (Azolla spp.) suggesting that a surface fresh/low salinity water setting dominated the region during this time period. Although predictions had placed the base of the sediment column at 50 million years, drilling revealed that the latest Paleocene to earliest Eocene boundary interval was recovered. During this time, about 55 million years ago, the Arctic was subtropical with warm surface ocean temperatures.

ACEX also penetrated into the underlying sedimentary bedrock, confirming the hypothesis that the Lomonosov Ridge crust is of shallow-water, continental origin and of Cretaceous age.

Professor Jan Backman described operating in this challenging environment: “At times, the drillsite was covered with ice 2-3 metres thick. At one point we encountered an ice flow of multiyear ice (harder and denser than ice frozen only in one Arctic winter) hundred of metres across and over 4 metres thick which was like driving into a brick wall.” But, with the aid of the three ice-breaking vessels the coring operations were successfully completed. The scientists will take home samples and will undertake further investigations during the next months – with more exciting results to come.

Eva Grönlund | alfa
Further information:
http://www.iodp.de
http://www.polar.se

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>